整合跨部门多模式数据(例如,放射学,病理学,基因组和临床数据)无处不在,在脑癌诊断和存活预测中无处不在。迄今为止,这种整合通常是由人类医师(以及专家小组)进行的,可以是主观的和半定量的。然而,多模式深度学习的最新进展已为利用这种过程以更加客观和定量的方式打开了一扇门。不幸的是,先前在脑癌生存预测上使用四种模式的艺术受到“完整模式”设置的限制(即,所有可用方式)。因此,关于如何有效预测脑癌生存的问题仍然存在开放性问题,从放射学,病理学,基因组和人口统计学数据中(例如,可能无法为患者收集一种或多种方式)。例如,我们是否应该同时使用完整和不完整的数据,更重要的是,如何使用这些数据?为了回答前面的问题,我们将跨部门多模式数据的多模式学习推广到缺失的数据设置。我们的贡献是三个方面:1)我们引入了最佳的多模式学习,其中缺少数据(MMD)管道具有优化的硬件消耗和计算效率; 2)我们将有关放射学,病理,基因组和人口统计学数据的多模式学习扩展到缺失的数据情景; 3)收集了一个大规模的公共数据集(有962名患者),以系统地评估胶质瘤肿瘤存活预测。所提出的方法将生存预测的C索引从0.7624提高到0.8053。
translated by 谷歌翻译
总生存时间(OS)时间是神经胶质瘤情况最重要的评估指数之一。多模式磁共振成像(MRI)扫描在神经胶质瘤预后OS时间的研究中起重要作用。为多模式MRI问题的OS时间预测提出了几种基于学习的方法。但是,这些方法通常在深度学习网络开始或结束时融合多模式信息,并且缺乏来自不同尺度的特征。此外,网络末尾的融合始终适应全球(例如,在全球平均池输出串联后完全连接)或与局部(例如,双线性池)的融合,这会失去与全球局部的局部信息。在本文中,我们提出了一种用于对脑肿瘤患者的多模式OS时间预测的新方法,该方法包含在不同尺度上引入的改进的非局部特征融合模块。我们的方法比当前最新方法获得了相对8.76%的改善(0.6989 vs. 0.6426的精度)。广泛的测试表明,我们的方法可以适应缺失方式的情况。该代码可在https://github.com/tangwen920812/mmmna-net上找到。
translated by 谷歌翻译
当肿瘤学家估计癌症患者的生存时,他们依靠多模式数据。尽管文献中已经提出了一些多模式的深度学习方法,但大多数人都依靠拥有两个或多个独立的网络,这些网络在整个模型的稍后阶段共享知识。另一方面,肿瘤学家在分析中没有这样做,而是通过多种来源(例如医学图像和患者病史)融合大脑中的信息。这项工作提出了一种深度学习方法,可以在量化癌症和估计患者生存时模仿肿瘤学家的分析行为。我们提出了TMSS,这是一种基于端到端变压器的多模式网络,用于分割和生存预测,该网络利用了变压器的优越性,这在于其能力处理不同模态的能力。该模型经过训练并验证了从头部和颈部肿瘤分割的训练数据集上的分割和预后任务以及PET/CT图像挑战(Hecktor)中的结果预测。我们表明,所提出的预后模型显着优于最先进的方法,其一致性指数为0.763 +/- 0.14,而与独立段模型相当的骰子得分为0.772 +/- 0.030。该代码公开可用。
translated by 谷歌翻译
使用多模态数据,例如整个幻灯片图像(WSIS)和基因表达数据的生存分析可以导致更准确的生存预测。以前的多模态生存模型无法有效地挖掘每个模态内的内在信息。此外,以前的方法将来自不同模式的信息视为类似的重要性,因此它们不能灵活地利用模态之间的潜在连接。为了解决上述问题,我们提出了一种新的不对称多模态方法,称为AMMASURV。与以前的作品不同,AMMASURV可以有效地利用每个模式内的内在信息,并灵活地适应不同重要性的模式。令人鼓舞的实验结果表明了我们对其他最先进的方法的方法的优越性。
translated by 谷歌翻译
Routine clinical visits of a patient produce not only image data, but also non-image data containing clinical information regarding the patient, i.e., medical data is multi-modal in nature. Such heterogeneous modalities offer different and complementary perspectives on the same patient, resulting in more accurate clinical decisions when they are properly combined. However, despite its significance, how to effectively fuse the multi-modal medical data into a unified framework has received relatively little attention. In this paper, we propose an effective graph-based framework called HetMed (Heterogeneous Graph Learning for Multi-modal Medical Data Analysis) for fusing the multi-modal medical data. Specifically, we construct a multiplex network that incorporates multiple types of non-image features of patients to capture the complex relationship between patients in a systematic way, which leads to more accurate clinical decisions. Extensive experiments on various real-world datasets demonstrate the superiority and practicality of HetMed. The source code for HetMed is available at https://github.com/Sein-Kim/Multimodal-Medical.
translated by 谷歌翻译
医生经常基于患者的图像扫描,例如磁共振成像(MRI),以及患者的电子健康记录(EHR),如年龄,性别,血压等。尽管在计算机视觉或自然语言研究领域的图像或文本分析中提出了大量的自动方法,但已经为医学图像的融合和医疗问题的EHR数据进行了更少的研究。在现有的早期或中间融合方法中,两种方式的特征串联仍然是一个主流。为了更好地利用图像和EHR数据,我们提出了一种多模态注意力模块,该模块使用EHR数据来帮助选择传统CNN的图像特征提取过程期间的重要区域。此外,我们建议将多头Machnib纳入门控多媒体单元(GMU),使其能够在不同子空间中平行熔断图像和EHR特征。在两个模块的帮助下,可以使用两个模态增强现有的CNN架构。预测脑内出血患者的Glasgow结果规模(GOS)和分类Alzheimer病的实验表明,该方法可以自动关注任务相关领域,并通过更好地利用图像和EHR功能来实现更好的结果。
translated by 谷歌翻译
医疗应用从计算机视觉中的快速进步受益。特别是患者监测,卧床人体姿势估计提供了重要的健康相关指标,具有医学条件评估的潜在价值。尽管该领域的进展巨大,但由于闭塞期间的大量模糊性,并且缺乏用于模型训练的手动标记数据的大型车辆,仍然是一个具有挑战性的任务,特别是具有隐私保留的热红外成像等领域,因此极大的兴趣。通过直接从数据学习功能的自我监督方法的有效性,我们提出了一种多模态条件变形AutoEncoder(MC-VAE),其能够重建在训练期间看到的缺失的模态。这种方法与HRNET一起使用,以使单个模态推断用于床上姿势估计。通过广泛的评估,我们证明身体位置可以从可用的方式得到有效地识别,通过高度依赖于在推理时间访问多种模式的基线模型的PAR结果上实现了PAR结果。拟议的框架支持未来的自我监督学习研究,从单个来源生成强大的模型,并期望它概括了临床环境中的许多未知分布。
translated by 谷歌翻译
多模式融合方法旨在整合来自不同数据源的信息。与天然数据集不同,例如在视听应用中,样本由“配对”模式组成,医疗保健中的数据通常异步收集。因此,对于给定样品需要所有方式,对于临床任务而言并不现实,并且在训练过程中显着限制了数据集的大小。在本文中,我们提出了Medfuse,这是一种概念上简单但有前途的基于LSTM的融合模块,可以容纳Uni-Mododal和多模式输入。我们使用MIMIC-IV数据集中的临床时间序列数据以及Mimic-CXR中的相应的胸部X射线图像,评估了融合方法,并引入了院内死亡率预测和表型分类的新基准结果。与更复杂的多模式融合策略相比,MEDFUSE在完全配对的测试集上的差距很大。它在部分配对的测试集中还保持了强大的稳定性,其中包含带有缺少胸部X射线图像的样品。我们发布了我们的可重复性代码,并在将来对竞争模型进行评估。
translated by 谷歌翻译
人们以不同的感官感知世界,例如视觉,听觉,气味和触摸。从多种方式处理和融合信息使人工智能可以更轻松地了解我们周围的世界。但是,当缺少模式时,在不同情况下,可用方式的数量会不同,这导致了N至一对融合问题。为了解决这个问题,我们提出了一个称为Tfusion的基于变压器的融合块。与预设公式或基于卷积的方法不同,所提出的块自动学习以融合可用的模式,而无需合成或零填充丢失。具体而言,从上游处理模型中提取的特征表示形式被投影为令牌并馈入变压器层以生成潜在的多模式相关性。然后,为了减少对特定模式的依赖性,引入了一种模态注意机制来构建共享表示,该表示可以由下游决策模型应用。提出的TFUSH块可以轻松地集成到现有的多模式分析网络中。在这项工作中,我们将tfusion应用于不同的骨干网络,以进行多模式的人类活动识别和脑肿瘤分割任务。广泛的实验结果表明,与竞争融合策略相比,Tfusion块的性能更好。
translated by 谷歌翻译
阿尔茨海默氏病(AD)是痴呆症的最常见形式,由于痴呆症的多因素病因,通常难以诊断。关于基于神经成像的基于神经成像的深度神经网络(DNN)的著作表明,结构磁共振图像(SMRI)和氟脱氧葡萄糖正电子发射层析成像(FDG-PET)可提高健康对照和受试者的研究人群的精度。与广告。但是,这一结果与既定的临床知识冲突,即FDG-PET比SMRI更好地捕获AD特定的病理。因此,我们提出了一个框架,用于对基于FDG-PET和SMRI进行多模式DNN的系统评估,并重新评估单模式DNN和多模式DNN,用于二进制健康与AD,以及三向健康/轻度的健康/轻度认知障碍/广告分类。我们的实验表明,使用FDG-PET的单模式网络的性能优于MRI(准确性0.91 vs 0.87),并且在组合时不会显示出改进。这符合有关AD生物标志物的既定临床知识,但提出了有关多模式DNN的真正好处的问题。我们认为,未来关于多模式融合的工作应系统地评估我们提出的评估框架后的个人模式的贡献。最后,我们鼓励社区超越健康与AD分类,并专注于痴呆症的鉴别诊断,在这种诊断中,在这种诊断中,融合了多模式图像信息与临床需求相符。
translated by 谷歌翻译
Learning good representation of giga-pixel level whole slide pathology images (WSI) for downstream tasks is critical. Previous studies employ multiple instance learning (MIL) to represent WSIs as bags of sampled patches because, for most occasions, only slide-level labels are available, and only a tiny region of the WSI is disease-positive area. However, WSI representation learning still remains an open problem due to: (1) patch sampling on a higher resolution may be incapable of depicting microenvironment information such as the relative position between the tumor cells and surrounding tissues, while patches at lower resolution lose the fine-grained detail; (2) extracting patches from giant WSI results in large bag size, which tremendously increases the computational cost. To solve the problems, this paper proposes a hierarchical-based multimodal transformer framework that learns a hierarchical mapping between pathology images and corresponding genes. Precisely, we randomly extract instant-level patch features from WSIs with different magnification. Then a co-attention mapping between imaging and genomics is learned to uncover the pairwise interaction and reduce the space complexity of imaging features. Such early fusion makes it computationally feasible to use MIL Transformer for the survival prediction task. Our architecture requires fewer GPU resources compared with benchmark methods while maintaining better WSI representation ability. We evaluate our approach on five cancer types from the Cancer Genome Atlas database and achieved an average c-index of $0.673$, outperforming the state-of-the-art multimodality methods.
translated by 谷歌翻译
This paper focuses on the task of survival time analysis for lung cancer. Although much progress has been made in this problem in recent years, the performance of existing methods is still far from satisfactory. Traditional and some deep learning-based survival time analyses for lung cancer are mostly based on textual clinical information such as staging, age, histology, etc. Unlike existing methods that predicting on the single modality, we observe that a human clinician usually takes multimodal data such as text clinical data and visual scans to estimate survival time. Motivated by this, in this work, we contribute a smart cross-modality network for survival analysis network named Lite-ProSENet that simulates a human's manner of decision making. Extensive experiments were conducted using data from 422 NSCLC patients from The Cancer Imaging Archive (TCIA). The results show that our Lite-ProSENet outperforms favorably again all comparison methods and achieves the new state of the art with the 89.3% on concordance. The code will be made publicly available.
translated by 谷歌翻译
纵向和多模式数据中固有的纵向变化和互补信息在阿尔茨海默氏病(AD)预测中起重要作用,尤其是在确定即将患有AD的轻度认知障碍受试者方面。但是,纵向和多模式数据可能缺少数据,这阻碍了这些数据的有效应用。此外,以前的纵向研究需要现有的纵向数据才能实现预测,但是预计在临床实践中,将在患者的基线访问(BL)上进行AD预测。因此,我们提出了一个多视图插补和交叉注意网络(MCNET),以在统一的框架中整合数据归档和AD预测,并实现准确的AD预测。首先,提出了一种多视图插补方法与对抗性学习相结合,该方法可以处理各种缺失的数据情况并减少插补错误。其次,引入了两个跨注意区块,以利用纵向和多模式数据中的潜在关联。最后,为数据插补,纵向分类和AD预测任务而建立了多任务学习模型。当对模型进行适当训练时,可以通过BL数据利用从纵向数据中学到的疾病进展信息以改善AD预测。在BL处的两个独立的测试集和单模数据对所提出的方法进行了测试,以验证其对AD预测的有效性和灵活性。结果表明,MCNET的表现优于几种最新方法。此外,提出了MCNET的解释性。因此,我们的MCNET是一种在纵向和多模式数据分析的AD预测中具有巨大应用潜力的工具。代码可在https://github.com/meiyan88/mcnet上找到。
translated by 谷歌翻译
在多模式分割领域中,可以考虑不同方式之间的相关性以改善分段结果。考虑到不同MR模型之间的相关性,在本文中,我们提出了一种由新型三关注融合引导的多模态分段网络。我们的网络包括与N个图像源,三关注融合块,双关注融合块和解码路径的N个独立于模型编码路径。独立编码路径的模型可以从n个模式捕获模态特征。考虑到从编码器中提取的所有功能都非常有用,我们建议使用基于双重的融合来重量沿模态和空间路径的特征,可以抑制更少的信息特征,并强调每个模态的有用的功能在不同的位置。由于不同模式之间存在强烈的相关性,基于双重关注融合块,我们提出了一种相关注意模块来形成三关注融合块。在相关性注意模块中,首先使用相关描述块来学习模态之间的相关性,然后基于相关性的约束来指导网络以学习对分段更相关的潜在相关特征。最后,通过解码器投影所获得的融合特征表示以获得分段结果。我们对Brats 2018年脑肿瘤分割进行测试的实验结果证明了我们提出的方法的有效性。
translated by 谷歌翻译
多模式MR成像通常用于临床实践中,以通过提供丰富的互补信息来诊断和研究脑肿瘤。以前的多模式MRI分割方法通常通过在网络的早期/中阶段连接多模式MRIS来执行模态融合,这几乎无法探索模态之间的非线性依赖性。在这项工作中,我们提出了一种新型的嵌套模态感知变压器(嵌套形式),以明确探索多模式MRIS在脑肿瘤分割中的模式内和模式间关系。我们建立在基于变压器的多模型和单一码头结构的基础上,我们对不同模式的高级表示进行嵌套的多模式融合,并在较低的尺度上应用对模态敏感的门控(MSG),以进行更有效的跳过连接。具体而言,多模式融合是在我们提出的嵌套模态感知特征聚合(NMAFA)模块中进行的,该模块通过三个方向的空间意见变压器增强了单个模态内的长期依赖性,并进一步补充了模态信息之间的关键情境信息。通过跨模式注意变压器。关于BRATS2020基准和私人脑膜瘤细分(Maniseg)数据集的广泛实验表明,嵌套形式显然比最先进的表现优于最先进的。该代码可从https://github.com/920232796/nestedformer获得。
translated by 谷歌翻译
目的:基于深度学习的放射素学(DLR)在医学图像分析中取得了巨大的成功,并被认为是依赖手工特征的常规放射线学的替代。在这项研究中,我们旨在探索DLR使用预处理PET/CT预测鼻咽癌(NPC)中5年无进展生存期(PFS)的能力。方法:总共招募了257名患者(内部/外部队列中的170/87),具有晚期NPC(TNM III期或IVA)。我们开发了一个端到端的多模式DLR模型,其中优化了3D卷积神经网络以从预处理PET/CT图像中提取深度特征,并预测了5年PFS的概率。作为高级临床特征,TNM阶段可以集成到我们的DLR模型中,以进一步提高预后性能。为了比较常规放射素学和DLR,提取了1456个手工制作的特征,并从54种特征选择方法和9种分类方法的54个交叉组合中选择了最佳常规放射线方法。此外,使用临床特征,常规放射线学签名和DLR签名进行风险组分层。结果:我们使用PET和CT的多模式DLR模型比最佳常规放射线方法获得了更高的预后性能。此外,多模式DLR模型仅使用PET或仅CT优于单模式DLR模型。对于风险组分层,常规的放射线学签名和DLR签名使内部和外部队列中的高风险患者群体之间有显着差异,而外部队列中的临床特征则失败。结论:我们的研究确定了高级NPC中生存预测的潜在预后工具,表明DLR可以为当前TNM分期提供互补值。
translated by 谷歌翻译
使用多模式磁共振成像(MRI)对于精确的脑肿瘤细分是必需的。主要问题是,并非所有类型的MRI都始终可以在临床考试中提供。基于同一患者的先生模式之间存在强烈相关性,在这项工作中,我们提出了一种缺少一个或多种方式的脑肿瘤分割网络。所提出的网络由三个子网组成:特征增强的生成器,相关约束块和分割网络。特征增强的生成器利用可用模态来生成表示缺少模态的3D特征增强图像。相关性约束块可以利用模态之间的多源相关性,并且还限制了发电机,以合成特征增强的模态,该特征增强的模态必须具有与可用模式具有相干相关性的特征增强的模态。分段网络是基于多编码器的U-Net,以实现最终的脑肿瘤分割。所提出的方法在Brats 2018数据集上进行评估。实验结果表明,拟议方法的有效性分别在全肿瘤,肿瘤核心和增强肿瘤上实现了82.9,74.9和59.1的平均骰子得分,并且优于3.5%,17%和18.2的最佳方法%。
translated by 谷歌翻译
已经开发了几种深度学习算法,以使用整个幻灯片图像(WSIS)预测癌症患者的存活。但是,WSI中与患者的生存和疾病进展有关的WSI中的图像表型对临床医生而言都是困难的,以及深度学习算法。用于生存预测的大多数基于深度学习的多个实例学习(MIL)算法使用顶级实例(例如Maxpooling)或顶级/底部实例(例如,Mesonet)来识别图像表型。在这项研究中,我们假设WSI中斑块得分分布的全面信息可以更好地预测癌症的生存。我们开发了一种基于分布的多构度生存学习算法(DeepDismisl)来验证这一假设。我们使用两个大型国际大型癌症WSIS数据集设计和执行实验-MCO CRC和TCGA Coad -Read。我们的结果表明,有关WSI贴片分数的分布的信息越多,预测性能越好。包括每个选定分配位置(例如百分位数)周围的多个邻域实例可以进一步改善预测。与最近发表的最新算法相比,DeepDismisl具有优越的预测能力。此外,我们的算法是可以解释的,可以帮助理解癌症形态表型与癌症生存风险之间的关系。
translated by 谷歌翻译
There exists unexplained diverse variation within the predefined colon cancer stages using only features either from genomics or histopathological whole slide images as prognostic factors. Unraveling this variation will bring about improved in staging and treatment outcome, hence motivated by the advancement of Deep Neural Network libraries and different structures and factors within some genomic dataset, we aggregate atypical patterns in histopathological images with diverse carcinogenic expression from mRNA, miRNA and DNA Methylation as an integrative input source into an ensemble deep neural network for colon cancer stages classification and samples stratification into low or high risk survival groups. The results of our Ensemble Deep Convolutional Neural Network model show an improved performance in stages classification on the integrated dataset. The fused input features return Area under curve Receiver Operating Characteristic curve (AUC ROC) of 0.95 compared with AUC ROC of 0.71 and 0.68 obtained when only genomics and images features are used for the stage's classification, respectively. Also, the extracted features were used to split the patients into low or high risk survival groups. Among the 2548 fused features, 1695 features showed a statistically significant survival probability differences between the two risk groups defined by the extracted features.
translated by 谷歌翻译
脑肿瘤分割是医学图像分析中最具挑战性问题之一。脑肿瘤细分的目标是产生准确描绘脑肿瘤区域。近年来,深入学习方法在解决各种计算机视觉问题时表现出了有希望的性能,例如图像分类,对象检测和语义分割。基于深度学习的方法已经应用于脑肿瘤细分并取得了有希望的结果。考虑到最先进技术所制作的显着突破,我们使用本调查来提供最近开发的深层学习脑肿瘤分割技术的全面研究。在本次调查中选择并讨论了100多篇科学论文,广泛地涵盖了网络架构设计,在不平衡条件下的细分等技术方面,以及多种方式流程。我们还为未来的发展方向提供了富有洞察力的讨论。
translated by 谷歌翻译