This paper focuses on the task of survival time analysis for lung cancer. Although much progress has been made in this problem in recent years, the performance of existing methods is still far from satisfactory. Traditional and some deep learning-based survival time analyses for lung cancer are mostly based on textual clinical information such as staging, age, histology, etc. Unlike existing methods that predicting on the single modality, we observe that a human clinician usually takes multimodal data such as text clinical data and visual scans to estimate survival time. Motivated by this, in this work, we contribute a smart cross-modality network for survival analysis network named Lite-ProSENet that simulates a human's manner of decision making. Extensive experiments were conducted using data from 422 NSCLC patients from The Cancer Imaging Archive (TCIA). The results show that our Lite-ProSENet outperforms favorably again all comparison methods and achieves the new state of the art with the 89.3% on concordance. The code will be made publicly available.
translated by 谷歌翻译
当肿瘤学家估计癌症患者的生存时,他们依靠多模式数据。尽管文献中已经提出了一些多模式的深度学习方法,但大多数人都依靠拥有两个或多个独立的网络,这些网络在整个模型的稍后阶段共享知识。另一方面,肿瘤学家在分析中没有这样做,而是通过多种来源(例如医学图像和患者病史)融合大脑中的信息。这项工作提出了一种深度学习方法,可以在量化癌症和估计患者生存时模仿肿瘤学家的分析行为。我们提出了TMSS,这是一种基于端到端变压器的多模式网络,用于分割和生存预测,该网络利用了变压器的优越性,这在于其能力处理不同模态的能力。该模型经过训练并验证了从头部和颈部肿瘤分割的训练数据集上的分割和预后任务以及PET/CT图像挑战(Hecktor)中的结果预测。我们表明,所提出的预后模型显着优于最先进的方法,其一致性指数为0.763 +/- 0.14,而与独立段模型相当的骰子得分为0.772 +/- 0.030。该代码公开可用。
translated by 谷歌翻译
本文提出了第二版的头部和颈部肿瘤(Hecktor)挑战的概述,作为第24届医学图像计算和计算机辅助干预(Miccai)2021的卫星活动。挑战由三个任务组成与患有头颈癌(H&N)的患者的PET / CT图像的自动分析有关,专注于oropharynx地区。任务1是FDG-PET / CT图像中H&N主肿瘤肿瘤体积(GTVT)的自动分割。任务2是来自同一FDG-PET / CT的进展自由生存(PFS)的自动预测。最后,任务3与任务2的任务2与参与者提供的地面真理GTVT注释相同。这些数据从六个中心收集,总共325个图像,分为224个培训和101个测试用例。通过103个注册团队和448个结果提交的重要参与,突出了对挑战的兴趣。在第一任务中获得0.7591的骰子相似度系数(DSC),分别在任务2和3中的0.7196和0.6978的一致性指数(C-Index)。在所有任务中,发现这种方法的简单性是确保泛化性能的关键。 PFS预测性能在任务2和3中的比较表明,提供GTVT轮廓对于实现最佳结果,这表明可以使用完全自动方法。这可能避免了对GTVT轮廓的需求,用于可重复和大规模的辐射瘤研究的开头途径,包括千元潜在的受试者。
translated by 谷歌翻译
变形金刚占据了自然语言处理领域,最近影响了计算机视觉区域。在医学图像分析领域中,变压器也已成功应用于全栈临床应用,包括图像合成/重建,注册,分割,检测和诊断。我们的论文旨在促进变压器在医学图像分析领域的认识和应用。具体而言,我们首先概述了内置在变压器和其他基本组件中的注意机制的核心概念。其次,我们回顾了针对医疗图像应用程序量身定制的各种变压器体系结构,并讨论其局限性。在这篇综述中,我们调查了围绕在不同学习范式中使用变压器,提高模型效率及其与其他技术的耦合的关键挑战。我们希望这篇评论可以为读者提供医学图像分析领域的读者的全面图片。
translated by 谷歌翻译
人工智能(AI)技术具有重要潜力,可以实现有效,鲁棒和自动的图像表型,包括识别细微图案。基于AI的检测搜索图像空间基于模式和特征来找到兴趣区域。存在一种良性的肿瘤组织学,可以通过使用图像特征的基于AI的分类方法来识别。图像从图像中提取可用于的可覆盖方式,可以通过显式(手工/工程化)和深度辐射谱系框架来探索途径。辐射瘤分析有可能用作非侵入性技术,以准确表征肿瘤,以改善诊断和治疗监测。这项工作介绍基于AI的技术,专注于肿瘤宠物和PET / CT成像,用于不同的检测,分类和预测/预测任务。我们还讨论了所需的努力,使AI技术转换为常规临床工作流程,以及潜在的改进和互补技术,例如在电子健康记录和神经象征性AI技术上使用自然语言处理。
translated by 谷歌翻译
Achieving accurate and automated tumor segmentation plays an important role in both clinical practice and radiomics research. Segmentation in medicine is now often performed manually by experts, which is a laborious, expensive and error-prone task. Manual annotation relies heavily on the experience and knowledge of these experts. In addition, there is much intra- and interobserver variation. Therefore, it is of great significance to develop a method that can automatically segment tumor target regions. In this paper, we propose a deep learning segmentation method based on multimodal positron emission tomography-computed tomography (PET-CT), which combines the high sensitivity of PET and the precise anatomical information of CT. We design an improved spatial attention network(ISA-Net) to increase the accuracy of PET or CT in detecting tumors, which uses multi-scale convolution operation to extract feature information and can highlight the tumor region location information and suppress the non-tumor region location information. In addition, our network uses dual-channel inputs in the coding stage and fuses them in the decoding stage, which can take advantage of the differences and complementarities between PET and CT. We validated the proposed ISA-Net method on two clinical datasets, a soft tissue sarcoma(STS) and a head and neck tumor(HECKTOR) dataset, and compared with other attention methods for tumor segmentation. The DSC score of 0.8378 on STS dataset and 0.8076 on HECKTOR dataset show that ISA-Net method achieves better segmentation performance and has better generalization. Conclusions: The method proposed in this paper is based on multi-modal medical image tumor segmentation, which can effectively utilize the difference and complementarity of different modes. The method can also be applied to other multi-modal data or single-modal data by proper adjustment.
translated by 谷歌翻译
鼻咽癌(NPC)是由鼻咽引起的恶性上皮癌。生存预测是NPC患者的主要关注点,因为它提供了早期的预后信息来计划治疗。最近,基于深度学习的深层生存模型已经证明了胜过基于传统放射素学的生存预测模型的潜力。深度存活模型通常使用覆盖整个目标区域的图像贴片(例如,NPC的鼻咽)或仅包含分段肿瘤区域作为输入。但是,使用整个目标区域的模型还将包括非相关的背景信息,而使用分段肿瘤区域的模型将无视原发性肿瘤不存在的潜在预后信息(例如,局部淋巴结转移和相邻的组织侵入)。在这项研究中,我们提出了一个3D端到端的深层多任务生存模型(DEEPMTS),用于从预处理PET/CT的晚期NPC中进行关节存活预测和肿瘤分割。我们的新颖性是引入硬分段分割主链,以指导与原发性肿瘤相关的局部特征的提取,从而减少了非相关背景信息的干扰。此外,我们还引入了一个级联的生存网络,以捕获原发性肿瘤中存在的预后信息,并进一步利用从分段主链中得出的全球肿瘤信息(例如,肿瘤的大小,形状和位置)。我们使用两个临床数据集进行的实验表明,我们的DEEPMT始终超过传统的基于放射线学的生存预测模型和现有的深层生存模型。
translated by 谷歌翻译
医生经常基于患者的图像扫描,例如磁共振成像(MRI),以及患者的电子健康记录(EHR),如年龄,性别,血压等。尽管在计算机视觉或自然语言研究领域的图像或文本分析中提出了大量的自动方法,但已经为医学图像的融合和医疗问题的EHR数据进行了更少的研究。在现有的早期或中间融合方法中,两种方式的特征串联仍然是一个主流。为了更好地利用图像和EHR数据,我们提出了一种多模态注意力模块,该模块使用EHR数据来帮助选择传统CNN的图像特征提取过程期间的重要区域。此外,我们建议将多头Machnib纳入门控多媒体单元(GMU),使其能够在不同子空间中平行熔断图像和EHR特征。在两个模块的帮助下,可以使用两个模态增强现有的CNN架构。预测脑内出血患者的Glasgow结果规模(GOS)和分类Alzheimer病的实验表明,该方法可以自动关注任务相关领域,并通过更好地利用图像和EHR功能来实现更好的结果。
translated by 谷歌翻译
脑肿瘤分割是医学图像分析中最具挑战性问题之一。脑肿瘤细分的目标是产生准确描绘脑肿瘤区域。近年来,深入学习方法在解决各种计算机视觉问题时表现出了有希望的性能,例如图像分类,对象检测和语义分割。基于深度学习的方法已经应用于脑肿瘤细分并取得了有希望的结果。考虑到最先进技术所制作的显着突破,我们使用本调查来提供最近开发的深层学习脑肿瘤分割技术的全面研究。在本次调查中选择并讨论了100多篇科学论文,广泛地涵盖了网络架构设计,在不平衡条件下的细分等技术方面,以及多种方式流程。我们还为未来的发展方向提供了富有洞察力的讨论。
translated by 谷歌翻译
目的:基于深度学习的放射素学(DLR)在医学图像分析中取得了巨大的成功,并被认为是依赖手工特征的常规放射线学的替代。在这项研究中,我们旨在探索DLR使用预处理PET/CT预测鼻咽癌(NPC)中5年无进展生存期(PFS)的能力。方法:总共招募了257名患者(内部/外部队列中的170/87),具有晚期NPC(TNM III期或IVA)。我们开发了一个端到端的多模式DLR模型,其中优化了3D卷积神经网络以从预处理PET/CT图像中提取深度特征,并预测了5年PFS的概率。作为高级临床特征,TNM阶段可以集成到我们的DLR模型中,以进一步提高预后性能。为了比较常规放射素学和DLR,提取了1456个手工制作的特征,并从54种特征选择方法和9种分类方法的54个交叉组合中选择了最佳常规放射线方法。此外,使用临床特征,常规放射线学签名和DLR签名进行风险组分层。结果:我们使用PET和CT的多模式DLR模型比最佳常规放射线方法获得了更高的预后性能。此外,多模式DLR模型仅使用PET或仅CT优于单模式DLR模型。对于风险组分层,常规的放射线学签名和DLR签名使内部和外部队列中的高风险患者群体之间有显着差异,而外部队列中的临床特征则失败。结论:我们的研究确定了高级NPC中生存预测的潜在预后工具,表明DLR可以为当前TNM分期提供互补值。
translated by 谷歌翻译
阿尔茨海默氏病(AD)是最常见的神经退行性疾病,具有最复杂的病原体之一,使有效且临床上可行的决策变得困难。这项研究的目的是开发一个新型的多模式深度学习框架,以帮助医疗专业人员进行AD诊断。我们提出了一个多模式的阿尔茨海默氏病诊断框架(MADDI),以准确检测成像,遗传和临床数据中的AD和轻度认知障碍(MCI)。 Maddi是新颖的,因为我们使用跨模式的注意力,它捕获了模态之间的相互作用 - 这种域中未探讨的方法。我们执行多级分类,这是一项艰巨的任务,考虑到MCI和AD之间的相似之处。我们与以前的最先进模型进行比较,评估注意力的重要性,并检查每种模式对模型性能的贡献。 Maddi在持有的测试集中对MCI,AD和控件进行了96.88%的精度分类。在检查不同注意力方案的贡献时,我们发现跨模式关注与自我注意力的组合表现出了最佳状态,并且模型中没有注意力层表现最差,而F1分数差异为7.9%。我们的实验强调了结构化临床数据的重要性,以帮助机器学习模型将其背景化和解释其余模式化。广泛的消融研究表明,未访问结构化临床信息的任何多模式混合物都遭受了明显的性能损失。这项研究证明了通过跨模式的注意组合多种输入方式的优点,以提供高度准确的AD诊断决策支持。
translated by 谷歌翻译
乳腺癌是女性可能发生的最严重的癌症之一。通过分析组织学图像(HIS)来自动诊断乳腺癌对患者及其预后很重要。他的分类为临床医生提供了对疾病的准确了解,并使他们可以更有效地治疗患者。深度学习(DL)方法已成功地用于各种领域,尤其是医学成像,因为它们有能力自动提取功能。这项研究旨在使用他的乳腺癌对不同类型的乳腺癌进行分类。在这项研究中,我们提出了一个增强的胶囊网络,该网络使用RES2NET块和四个额外的卷积层提取多尺度特征。此外,由于使用了小的卷积内核和RES2NET块,因此所提出的方法具有较少的参数。结果,新方法的表现优于旧方法,因为它会自动学习最佳功能。测试结果表明该模型的表现优于先前的DL方法。
translated by 谷歌翻译
肺癌是癌症相关死亡率的主要原因。尽管新技术(例如图像分割)对于改善检测和较早诊断至关重要,但治疗该疾病仍然存在重大挑战。特别是,尽管治愈性分辨率增加,但许多术后患者仍会出现复发性病变。因此,非常需要预后工具,可以更准确地预测患者复发的风险。在本文中,我们探讨了卷积神经网络(CNN)在术前计算机断层扫描(CT)图像中存在的分割和复发风险预测。首先,随着医学图像分割的最新进展扩展,剩余的U-NET用于本地化和表征每个结节。然后,确定的肿瘤将传递给第二个CNN进行复发风险预测。该系统的最终结果是通过随机的森林分类器产生的,该分类器合成具有临床属性的第二个网络的预测。分割阶段使用LIDC-IDRI数据集,并获得70.3%的骰子得分。复发风险阶段使用了国家癌症研究所的NLST数据集,并获得了73.0%的AUC。我们提出的框架表明,首先,自动结节分割方法可以概括地为各种多任务系统提供管道,其次,深度学习和图像处理具有改善当前预后工具的潜力。据我们所知,这是第一个完全自动化的细分和复发风险预测系统。
translated by 谷歌翻译
肺癌是全世界癌症死亡的主要原因,具有各种组织学类型,其中肺腺癌(Luac)最近是最普遍的。肺腺癌被归类为预侵入性,微创和侵入性腺癌。及时,准确地了解肺结核的侵袭性导致适当的治疗计划,并降低了不必要或晚期手术的风险。目前,主要成像模型评估和预测Luacs的侵袭性是胸部CT。然而,基于CT图像的结果是主观的并且与手术切除后提供的地面真理审查相比,患有低精度。本文开发了一种基于预测变压器的框架,称为“CAE变压器”,以对Luacs进行分类。 CAE变换器利用卷积自动编码器(CAE)来自动从CT切片中提取信息性功能,然后将其馈送到修改的变压器模型以捕获全局切片关系。我们的内部数据集114个病理证明的副实体结节(SSN)的实验结果证明了CAE变压器在直方图/基于射频的模型上的优越性及其基于深度学习的对应物,实现了87.73%,灵敏度的准确性使用10倍交叉验证,88.67%,特异性为86.33%和0.913的AUC。
translated by 谷歌翻译
Learning good representation of giga-pixel level whole slide pathology images (WSI) for downstream tasks is critical. Previous studies employ multiple instance learning (MIL) to represent WSIs as bags of sampled patches because, for most occasions, only slide-level labels are available, and only a tiny region of the WSI is disease-positive area. However, WSI representation learning still remains an open problem due to: (1) patch sampling on a higher resolution may be incapable of depicting microenvironment information such as the relative position between the tumor cells and surrounding tissues, while patches at lower resolution lose the fine-grained detail; (2) extracting patches from giant WSI results in large bag size, which tremendously increases the computational cost. To solve the problems, this paper proposes a hierarchical-based multimodal transformer framework that learns a hierarchical mapping between pathology images and corresponding genes. Precisely, we randomly extract instant-level patch features from WSIs with different magnification. Then a co-attention mapping between imaging and genomics is learned to uncover the pairwise interaction and reduce the space complexity of imaging features. Such early fusion makes it computationally feasible to use MIL Transformer for the survival prediction task. Our architecture requires fewer GPU resources compared with benchmark methods while maintaining better WSI representation ability. We evaluate our approach on five cancer types from the Cancer Genome Atlas database and achieved an average c-index of $0.673$, outperforming the state-of-the-art multimodality methods.
translated by 谷歌翻译
随着深度学习方法的进步,如深度卷积神经网络,残余神经网络,对抗网络的进步。 U-Net架构最广泛利用生物医学图像分割,以解决目标区域或子区域的识别和检测的自动化。在最近的研究中,基于U-Net的方法在不同应用中显示了最先进的性能,以便在脑肿瘤,肺癌,阿尔茨海默,乳腺癌等疾病的早期诊断和治疗中发育计算机辅助诊断系统等,使用各种方式。本文通过描述U-Net框架来提出这些方法的成功,然后通过执行1)型号的U-Net变体进行综合分析,2)模特内分类,建立更好的见解相关的挑战和解决方案。此外,本文还强调了基于U-Net框架在持续的大流行病,严重急性呼吸综合征冠状病毒2(SARS-COV-2)中的贡献也称为Covid-19。最后,分析了这些U-Net变体的优点和相似性以及生物医学图像分割所涉及的挑战,以发现该领域的未来未来的研究方向。
translated by 谷歌翻译
The survival analysis on histological whole-slide images (WSIs) is one of the most important means to estimate patient prognosis. Although many weakly-supervised deep learning models have been developed for gigapixel WSIs, their potential is generally restricted by classical survival analysis rules and fully-supervision requirements. As a result, these models provide patients only with a completely-certain point estimation of time-to-event, and they could only learn from the well-annotated WSI data currently at a small scale. To tackle these problems, we propose a novel adversarial multiple instance learning (AdvMIL) framework. This framework is based on adversarial time-to-event modeling, and it integrates the multiple instance learning (MIL) that is much necessary for WSI representation learning. It is a plug-and-play one, so that most existing WSI-based models with embedding-level MIL networks can be easily upgraded by applying this framework, gaining the improved ability of survival distribution estimation and semi-supervised learning. Our extensive experiments show that AdvMIL could not only bring performance improvement to mainstream WSI models at a relatively low computational cost, but also enable these models to learn from unlabeled data with semi-supervised learning. Our AdvMIL framework could promote the research of time-to-event modeling in computational pathology with its novel paradigm of adversarial MIL.
translated by 谷歌翻译
There exists unexplained diverse variation within the predefined colon cancer stages using only features either from genomics or histopathological whole slide images as prognostic factors. Unraveling this variation will bring about improved in staging and treatment outcome, hence motivated by the advancement of Deep Neural Network libraries and different structures and factors within some genomic dataset, we aggregate atypical patterns in histopathological images with diverse carcinogenic expression from mRNA, miRNA and DNA Methylation as an integrative input source into an ensemble deep neural network for colon cancer stages classification and samples stratification into low or high risk survival groups. The results of our Ensemble Deep Convolutional Neural Network model show an improved performance in stages classification on the integrated dataset. The fused input features return Area under curve Receiver Operating Characteristic curve (AUC ROC) of 0.95 compared with AUC ROC of 0.71 and 0.68 obtained when only genomics and images features are used for the stage's classification, respectively. Also, the extracted features were used to split the patients into low or high risk survival groups. Among the 2548 fused features, 1695 features showed a statistically significant survival probability differences between the two risk groups defined by the extracted features.
translated by 谷歌翻译
集成多模式数据以改善医学图像分析,最近受到了极大的关注。但是,由于模态差异,如何使用单个模型来处理来自多种模式的数据仍然是一个开放的问题。在本文中,我们提出了一种新的方案,以实现未配对多模式医学图像的更好的像素级分割。与以前采用模式特异性和模态共享模块的以前方法不同,以适应不同方式的外观差异,同时提取共同的语义信息,我们的方法基于具有精心设计的外部注意模块(EAM)的单个变压器来学习在训练阶段,结构化的语义一致性(即语义类表示及其相关性)。在实践中,可以通过分别在模态级别和图像级别实施一致性正则化来逐步实现上述结构化语义一致性。采用了提出的EAM来学习不同尺度表示的语义一致性,并且一旦模型进行了优化,就可以丢弃。因此,在测试阶段,我们只需要为所有模态预测维护一个变压器,这可以很好地平衡模型的易用性和简单性。为了证明所提出的方法的有效性,我们对两个医学图像分割方案进行了实验:(1)心脏结构分割,(2)腹部多器官分割。广泛的结果表明,所提出的方法的表现优于最新方法,甚至通过极有限的训练样本(例如1或3个注释的CT或MRI图像)以一种特定的方式来实现竞争性能。
translated by 谷歌翻译
脑转移性疾病的治疗决策依赖于主要器官位点的知识,目前用活组织检查和组织学进行。在这里,我们开发了一种具有全脑MRI数据的准确非侵入性数字组织学的新型深度学习方法。我们的IRB批准的单网回顾性研究由患者(n = 1,399)组成,提及MRI治疗规划和伽马刀放射牢房超过19年。对比增强的T1加权和T2加权流体减毒的反转恢复脑MRI考试(n = 1,582)被预处理,并输入肿瘤细分,模态转移和主要部位分类的建议深度学习工作流程为五个课程之一(肺,乳腺,黑色素瘤,肾等)。十倍的交叉验证产生的总体AUC为0.947(95%CI:0.938,0.955),肺类AUC,0.899(95%CI:0.884,0.915),乳房类AUC为0.990(95%CI:0.983,0.997) ,黑色素瘤ACAC为0.882(95%CI:0.858,0.906),肾类AUC为0.870(95%CI:0.823,0.918),以及0.885的其他AUC(95%CI:0.843,0.949)。这些数据确定全脑成像特征是判别的,以便准确诊断恶性肿瘤的主要器官位点。我们的端到端深度射出方法具有巨大的分类来自全脑MRI图像的转移性肿瘤类型。进一步的细化可以提供一种无价的临床工具,以加快对精密治疗和改进的结果的原发性癌症现场鉴定。
translated by 谷歌翻译