被广泛采用的缩减采样是为了在视觉识别的准确性和延迟之间取得良好的权衡。不幸的是,没有学习常用的合并层,因此无法保留重要信息。作为另一个降低方法,自适应采样权重和与任务相关的过程区域,因此能够更好地保留有用的信息。但是,自适应采样的使用仅限于某些层。在本文中,我们表明,在深神经网络的构件中使用自适应采样可以提高其效率。特别是,我们提出了SSBNET,该SSBNET是通过将采样层反复插入Resnet等现有网络构建的。实验结果表明,所提出的SSBNET可以在ImageNet和可可数据集上实现竞争性图像分类和对象检测性能。例如,SSB-Resnet-RS-200在Imagenet数据集上的精度达到82.6%,比基线RESNET-RS-152高0.6%,具有相似的复杂性。可视化显示了SSBNET在允许不同层专注于不同位置的优势,而消融研究进一步验证了自适应采样比均匀方法的优势。
translated by 谷歌翻译
由于存储器和计算资源有限,部署在移动设备上的卷积神经网络(CNNS)是困难的。我们的目标是通过利用特征图中的冗余来设计包括CPU和GPU的异构设备的高效神经网络,这很少在神经结构设计中进行了研究。对于类似CPU的设备,我们提出了一种新颖的CPU高效的Ghost(C-Ghost)模块,以生成从廉价操作的更多特征映射。基于一组内在的特征映射,我们使用廉价的成本应用一系列线性变换,以生成许多幽灵特征图,可以完全揭示内在特征的信息。所提出的C-Ghost模块可以作为即插即用组件,以升级现有的卷积神经网络。 C-Ghost瓶颈旨在堆叠C-Ghost模块,然后可以轻松建立轻量级的C-Ghostnet。我们进一步考虑GPU设备的有效网络。在建筑阶段的情况下,不涉及太多的GPU效率(例如,深度明智的卷积),我们建议利用阶段明智的特征冗余来制定GPU高效的幽灵(G-GHOST)阶段结构。舞台中的特征被分成两个部分,其中使用具有较少输出通道的原始块处理第一部分,用于生成内在特征,另一个通过利用阶段明智的冗余来生成廉价的操作。在基准测试上进行的实验证明了所提出的C-Ghost模块和G-Ghost阶段的有效性。 C-Ghostnet和G-Ghostnet分别可以分别实现CPU和GPU的准确性和延迟的最佳权衡。代码可在https://github.com/huawei-noah/cv-backbones获得。
translated by 谷歌翻译
Deploying convolutional neural networks (CNNs) on embedded devices is difficult due to the limited memory and computation resources. The redundancy in feature maps is an important characteristic of those successful CNNs, but has rarely been investigated in neural architecture design. This paper proposes a novel Ghost module to generate more feature maps from cheap operations. Based on a set of intrinsic feature maps, we apply a series of linear transformations with cheap cost to generate many ghost feature maps that could fully reveal information underlying intrinsic features. The proposed Ghost module can be taken as a plug-and-play component to upgrade existing convolutional neural networks. Ghost bottlenecks are designed to stack Ghost modules, and then the lightweight Ghost-Net can be easily established. Experiments conducted on benchmarks demonstrate that the proposed Ghost module is an impressive alternative of convolution layers in baseline models, and our GhostNet can achieve higher recognition performance (e.g. 75.7% top-1 accuracy) than MobileNetV3 with similar computational cost on the ImageNet ILSVRC-2012 classification dataset. Code is available at https: //github.com/huawei-noah/ghostnet.
translated by 谷歌翻译
本文解决了由多头自我注意力(MHSA)中高计算/空间复杂性引起的视觉变压器的低效率缺陷。为此,我们提出了层次MHSA(H-MHSA),其表示以层次方式计算。具体而言,我们首先将输入图像分为通常完成的补丁,每个补丁都被视为令牌。然后,拟议的H-MHSA学习本地贴片中的令牌关系,作为局部关系建模。然后,将小贴片合并为较大的贴片,H-MHSA对少量合并令牌的全局依赖性建模。最后,汇总了本地和全球专注的功能,以获得具有强大表示能力的功能。由于我们仅在每个步骤中计算有限数量的令牌的注意力,因此大大减少了计算负载。因此,H-MHSA可以在不牺牲细粒度信息的情况下有效地模拟令牌之间的全局关系。使用H-MHSA模块合并,我们建立了一个基于层次的变压器网络的家族,即HAT-NET。为了证明在场景理解中HAT-NET的优越性,我们就基本视觉任务进行了广泛的实验,包括图像分类,语义分割,对象检测和实例细分。因此,HAT-NET为视觉变压器提供了新的视角。可以在https://github.com/yun-liu/hat-net上获得代码和预估计的模型。
translated by 谷歌翻译
现有的多尺度解决方案会导致仅增加接受场大小的风险,同时忽略小型接受场。因此,有效构建自适应神经网络以识别各种空间尺度对象是一个具有挑战性的问题。为了解决这个问题,我们首先引入一个新的注意力维度,即除了现有的注意力维度(例如渠道,空间和分支)之外,并提出了一个新颖的选择性深度注意网络,以对称地处理各种视觉中的多尺度对象任务。具体而言,在给定神经网络的每个阶段内的块,即重新连接,输出层次功能映射共享相同的分辨率但具有不同的接收场大小。基于此结构属性,我们设计了一个舞台建筑模块,即SDA,其中包括树干分支和类似SE的注意力分支。躯干分支的块输出融合在一起,以通过注意力分支指导其深度注意力分配。根据提出的注意机制,我们可以动态选择不同的深度特征,这有助于自适应调整可变大小输入对象的接收场大小。这样,跨块信息相互作用会导致沿深度方向的远距离依赖关系。与其他多尺度方法相比,我们的SDA方法结合了从以前的块到舞台输出的多个接受场,从而提供了更广泛,更丰富的有效接收场。此外,我们的方法可以用作其他多尺度网络以及注意力网络的可插入模块,并创造为SDA- $ x $ net。它们的组合进一步扩展了有效的接受场的范围,可以实现可解释的神经网络。我们的源代码可在\ url {https://github.com/qingbeiguo/sda-xnet.git}中获得。
translated by 谷歌翻译
为了实现不断增长的准确性,通常会开发大型和复杂的神经网络。这样的模型需要高度的计算资源,因此不能在边缘设备上部署。由于它们在几个应用领域的有用性,建立资源有效的通用网络非常感兴趣。在这项工作中,我们努力有效地结合了CNN和变压器模型的优势,并提出了一种新的有效混合体系结构。特别是在EDGENEXT中,我们引入了分裂深度转置注意力(SDTA)编码器,该编码器将输入张量分解为多个通道组,并利用深度旋转以及跨通道维度的自我注意力,以隐含地增加接受场并编码多尺度特征。我们在分类,检测和分割任务上进行的广泛实验揭示了所提出的方法的优点,优于相对较低的计算要求的最先进方法。我们具有130万参数的EDGENEXT模型在Imagenet-1k上达到71.2 \%TOP-1的精度,超过移动设备的绝对增益为2.2 \%,而拖鞋减少了28 \%。此外,我们具有560万参数的EDGENEXT模型在Imagenet-1k上达到了79.4 \%TOP-1的精度。代码和模型可在https://t.ly/_vu9上公开获得。
translated by 谷歌翻译
视觉变压器由于能够捕获图像中的长期依赖性的能力而成功地应用于图像识别任务。但是,变压器与现有卷积神经网络(CNN)之间的性能和计算成本仍然存在差距。在本文中,我们旨在解决此问题,并开发一个网络,该网络不仅可以超越规范变压器,而且可以超越高性能卷积模型。我们通过利用变压器来捕获长期依赖性和CNN来建模本地特征,从而提出了一个新的基于变压器的混合网络。此外,我们将其扩展为获得一个称为CMT的模型家族,比以前的基于卷积和基于变压器的模型获得了更好的准确性和效率。特别是,我们的CMT-S在ImageNet上获得了83.5%的TOP-1精度,而在拖鞋上的拖曳率分别比现有的DEIT和EficitiveNet小14倍和2倍。拟议的CMT-S还可以很好地概括CIFAR10(99.2%),CIFAR100(91.7%),花(98.7%)以及其他具有挑战性的视觉数据集,例如可可(44.3%地图),计算成本较小。
translated by 谷歌翻译
最近,Vision Transformer通过推动各种视觉任务的最新技术取得了巨大的成功。视觉变压器中最具挑战性的问题之一是,图像令牌的较大序列长度会导致高计算成本(二次复杂性)。解决此问题的一个流行解决方案是使用单个合并操作来减少序列长度。本文考虑如何改善现有的视觉变压器,在这种变压器中,单个合并操作提取的合并功能似乎不太强大。为此,我们注意到,由于其在上下文抽象中的强大能力,金字塔池在各种视觉任务中已被证明是有效的。但是,在骨干网络设计中尚未探索金字塔池。为了弥合这一差距,我们建议在视觉变压器中将金字塔池汇总到多头自我注意力(MHSA)中,同时降低了序列长度并捕获强大的上下文特征。我们插入了基于池的MHSA,我们构建了一个通用视觉变压器主链,称为金字塔池变压器(P2T)。广泛的实验表明,与先前的基于CNN-和基于变压器的网络相比,当将P2T用作骨干网络时,它在各种视觉任务中显示出很大的优势。该代码将在https://github.com/yuhuan-wu/p2t上发布。
translated by 谷歌翻译
我们从实际应用的角度重新审视了现有的出色变压器。他们中的大多数甚至不如基本的重新连接系列效率那么高,并且偏离了现实的部署方案。这可能是由于当前的标准测量计算效率,例如FLOPS或参数是单方面的,次优的和对硬件的不敏感的。因此,本文直接将特定硬件的紧张延迟视为效率指标,该指标提供了涉及计算能力,内存成本和带宽的更全面的反馈。基于一系列受控实验,这项工作为面向浓度和部署的网络设计提供了四个实用指南,例如,在阶段级别,早期的变压器和晚期CNN,在Block Level的早期CNN和Late Transformer。因此,提出了一个面向Tensortrt的变压器家族,缩写为TRT-VIT。广泛的实验表明,在不同的视觉任务(例如,图像分类,对象检测和语义细分)方面,TRT-VIT显着优于现有的Convnet和视觉变压器。例如,在82.7%的Imagenet-1k Top-1精度下,TRT-VIT比CSWIN快2.7 $ \ times $,比双胞胎快2.0 $ \ times $。在MS-COCO对象检测任务上,TRT-VIT与双胞胎达到可比的性能,而推理速度则增加了2.8 $ \ times $。
translated by 谷歌翻译
先前的视觉MLP,如MLP-MILER和RESMLP接受线性扁平的图像贴片作为输入,使其对不同的输入大小和难以捕获空间信息。这种方法隐瞒了MLP与基于变压器的对应物相比,并防止它们成为计算机视觉的一般骨干。本文介绍了Hire-MLP,通过\ TextBF {Hi} reachical \ TextBF {Re}排列,这是一个简单而竞争的愿景MLP架构,其中包含两个重排级别。具体地,提出内部区域重新排列以捕获空间区域内的局部信息,并且提出横区域重新排列以使不同区域之间的信息通信能够通过沿空间方向循环地转换所有令牌来实现不同区域之间的信息通信。广泛的实验证明了Hire-MLP作为各种视觉任务的多功能骨干的有效性。特别是,Hire-MLP在图像分类,对象检测和语义分割任务上实现竞争结果,例如,在Imagenet上的83.8%的前1个精度,51.7%盒AP和Coco Val2017上的44.8%掩模AP和Ade20k上的49.9%Miou ,超越以前的基于变压器和基于MLP的型号,具有更好的折衷以获得准确性和吞吐量。代码可在https://github.com/ggjy/hire-wave-mlp.pytorch获得。
translated by 谷歌翻译
变压器最近在各种视觉任务上表现出卓越的性能。大型有时甚至全球,接收领域赋予变换器模型,并通过其CNN对应物具有更高的表示功率。然而,简单地扩大接收领域也产生了几个问题。一方面,使用致密的注意,例如,在VIT中,导致过度的记忆和计算成本,并且特征可以受到超出兴趣区域的无关紧要的影响。另一方面,PVT或SWIN变压器采用的稀疏注意是数据不可知论,可能会限制模拟长距离关系的能力。为了缓解这些问题,我们提出了一种新型可变形的自我关注模块,其中以数据相关的方式选择密钥和值对中的密钥和值对的位置。这种灵活的方案使自我关注模块能够专注于相关区域并捕获更多的信息性功能。在此基础上,我们呈现可变形的关注变压器,一般骨干模型,具有可变形关注的图像分类和密集预测任务。广泛的实验表明,我们的模型在综合基准上实现了一致的改善结果。代码可在https://github.com/leaplabthu/dat上获得。
translated by 谷歌翻译
视觉变压器(VIT)用作强大的视觉模型。与卷积神经网络不同,在前几年主导视觉研究,视觉变压器享有捕获数据中的远程依赖性的能力。尽管如此,任何变压器架构的组成部分,自我关注机制都存在高延迟和低效的内存利用,使其不太适合高分辨率输入图像。为了缓解这些缺点,分层视觉模型在非交错的窗口上局部使用自我关注。这种放松会降低输入尺寸的复杂性;但是,它限制了横窗相互作用,损害了模型性能。在本文中,我们提出了一种新的班次不变的本地注意层,称为查询和参加(QNA),其以重叠的方式聚集在本地输入,非常类似于卷积。 QNA背后的关键想法是介绍学习的查询,这允许快速高效地实现。我们通过将其纳入分层视觉变压器模型来验证我们的层的有效性。我们展示了速度和内存复杂性的改进,同时实现了与最先进的模型的可比准确性。最后,我们的图层尺寸尤其良好,窗口大小,需要高于X10的内存,而不是比现有方法更快。
translated by 谷歌翻译
我们介绍了移动前的Mobilenet和Transformer的平行设计,在两侧桥。该结构利用MobileNet在全局互动下在局部加工和变压器处的优点。而且桥梁可以实现本地和全局特征的双向融合。不同于近期Vision变形金机的作品,移动设备中的变压器包含很少的令牌(例如6或更少的令牌),这些代币被随机初始化以学习全球前沿,导致计算成本低。结合所提出的轻量度跨关注模型桥梁,移动前不仅是计算高效的,而且还有更多的表示力量。它在从25米到500米到500米拖鞋的低浮圈制度以25米到500米的潮流表现出MobileNetv3。例如,移动前者在294米的拖鞋处获得77.9 \%的前1个精度,获得1.3 \%的MobileNetv3,但节省了17 \%的计算。当传输到对象检测时,移动式以前从RetinAnet框架中占MobileNetv3到8.6 AP。此外,我们通过用移动设备替换DETR中的骨干,编码器和解码器来构建高效的端到端探测器,该骨干,其优于12个AP,但节省了52 \%的计算成本和36 \%的参数。
translated by 谷歌翻译
本文介绍了一个简单的MLP架构,CycleMLP,这是一种多功能骨干,用于视觉识别和密集的预测。与现代MLP架构相比,例如MLP混合器,RESMLP和GMLP,其架构与图像尺寸相关,因此在物体检测和分割中不可行,与现代方法相比具有两个优点。 (1)它可以应对各种图像尺寸。 (2)通过使用本地窗口,它可以实现对图像大小的线性计算复杂性。相比之下,由于完全空间连接,以前的MLP具有$ O(n ^ 2)$计算。我们构建一系列模型,超越现有的MLP,甚至最先进的基于变压器的模型,例如,使用较少的参数和拖鞋。我们扩展了类似MLP的模型的适用性,使它们成为密集预测任务的多功能骨干。 CycleMLP在对象检测,实例分割和语义细分上实现了竞争结果。特别是,Cyclemlp-tiny优于3.3%Miou在Ade20K数据集中的速度较少,具有较少的拖鞋。此外,CycleMLP还在Imagenet-C数据集上显示出优异的零射鲁布利。代码可以在https://github.com/shoufachen/cyclemlp获得。
translated by 谷歌翻译
Transformers have attracted increasing interests in computer vision, but they still fall behind state-of-the-art convolutional networks. In this work, we show that while Transformers tend to have larger model capacity, their generalization can be worse than convolutional networks due to the lack of the right inductive bias. To effectively combine the strengths from both architectures, we present CoAtNets (pronounced "coat" nets), a family of hybrid models built from two key insights:(1) depthwise Convolution and self-Attention can be naturally unified via simple relative attention; (2) vertically stacking convolution layers and attention layers in a principled way is surprisingly effective in improving generalization, capacity and efficiency. Experiments show that our CoAtNets achieve state-of-the-art performance under different resource constraints across various datasets: Without extra data, CoAtNet achieves 86.0% ImageNet top-1 accuracy; When pre-trained with 13M images from ImageNet-21K, our CoAtNet achieves 88.56% top-1 accuracy, matching ViT-huge pre-trained with 300M images from JFT-300M while using 23x less data; Notably, when we further scale up CoAtNet with JFT-3B, it achieves 90.88% top-1 accuracy on ImageNet, establishing a new state-of-the-art result.1 The initial projection stage can be seen as an aggressive down-sampling convolutional stem.
translated by 谷歌翻译
在本文中,我们将多尺度视觉变压器(MVIT)作为图像和视频分类的统一架构,以及对象检测。我们提出了一种改进的MVIT版本,它包含分解的相对位置嵌入和残余汇集连接。我们以五种尺寸实例化此架构,并评估Imagenet分类,COCO检测和动力学视频识别,在此优先效果。我们进一步比较了MVITS的汇集注意力来窗口注意力机制,其中它在准确性/计算中优于后者。如果没有钟声,MVIT在3个域中具有最先进的性能:ImageNet分类的准确性为88.8%,Coco对象检测的56.1盒AP和动力学-400视频分类的86.1%。代码和模型将公开可用。
translated by 谷歌翻译
这项工作介绍了一个简单的视觉变压器设计,作为对象本地化和实例分段任务的强大基线。变压器最近在图像分类任务中展示了竞争性能。为了采用对象检测和密集的预测任务,许多作品从卷积网络和高度定制的Vit架构继承了多级设计。在这种设计背后,目标是在计算成本和多尺度全球背景的有效聚合之间进行更好的权衡。然而,现有的作品采用多级架构设计作为黑匣子解决方案,无清楚地了解其真正的益处。在本文中,我们全面研究了三个架构设计选择对vit - 空间减少,加倍的频道和多尺度特征 - 并证明了vanilla vit架构可以在没有手动的多尺度特征的情况下实现这一目标,保持原始的Vit设计哲学。我们进一步完成了缩放规则,以优化模型的准确性和计算成本/型号大小的权衡。通过在整个编码器块中利用恒定的特征分辨率和隐藏大小,我们提出了一种称为通用视觉变压器(UVIT)的简单而紧凑的VIT架构,可实现COCO对象检测和实例分段任务的强劲性能。
translated by 谷歌翻译
先前的工作提出了几种策略,以降低自我发挥机制的计算成本。这些作品中的许多作品都考虑将自我关注程序分解为区域和局部特征提取程序,这些程序都会产生较小的计算复杂性。但是,区域信息通常仅以损失的不良信息为代价,原因是由于下采样而丢失。在本文中,我们提出了一种新颖的变压器体系结构,旨在减轻成本问题,称为双视觉变压器(双击)。新的体系结构结合了一个关键的语义途径,可以更有效地将代币向量压缩到具有降低的复杂性顺序的全球语义中。然后,这种压缩的全局语义是通过另一个构造的像素途径在学习更精细的像素级详细信息中作为有用的先前信息。然后将语义途径和像素途径集成在一起并进行联合训练,从而通过这两个途径并行传播增强的自我运动信息。此后,双攻击能够降低计算复杂性,而不会损害很大的准确性。我们从经验上证明,双重射击比SOTA变压器体系结构具有较高的训练复杂性。源代码可在\ url {https://github.com/yehli/imagenetmodel}中获得。
translated by 谷歌翻译
由于复杂的注意机制和模型设计,大多数现有的视觉变压器(VIT)无法在现实的工业部署方案中的卷积神经网络(CNN)高效,例如张力和coreml。这提出了一个独特的挑战:可以设计视觉神经网络以与CNN一样快地推断并表现强大吗?最近的作品试图设计CNN-Transformer混合体系结构来解决这个问题,但是这些作品的整体性能远非令人满意。为了结束这些结束,我们提出了下一代视觉变压器,以在现实的工业场景中有效部署,即下一步,从延迟/准确性权衡的角度来看,它在CNN和VIT上占主导地位。在这项工作中,下一个卷积块(NCB)和下一个变压器块(NTB)分别开发出用于使用部署友好机制捕获本地和全球信息。然后,下一个混合策略(NHS)旨在将NCB和NTB堆叠在有效的混合范式中,从而提高了各种下游任务中的性能。广泛的实验表明,在各种视觉任务方面的延迟/准确性权衡方面,下一个VIT明显优于现有的CNN,VIT和CNN转换混合体系结构。在Tensorrt上,在可可检测上,Next-Vit超过5.4 MAP(从40.4到45.8),在类似延迟下,ADE20K细分的8.2%MIOU(从38.8%到47.0%)。同时,它可以与CSWIN达到可比的性能,而推理速度则以3.6倍的速度加速。在COREML上,在类似的延迟下,在COCO检测上,下一步超过了可可检测的4.6 MAP(从42.6到47.2),ADE20K分割的3.5%MIOU(从45.2%到48.7%)。代码将最近发布。
translated by 谷歌翻译
视觉变压器的最新进展在基于点产生自我注意的新空间建模机制驱动的各种任务中取得了巨大成功。在本文中,我们表明,视觉变压器背后的关键要素,即输入自适应,远程和高阶空间相互作用,也可以通过基于卷积的框架有效地实现。我们介绍了递归封闭式卷积($ \ textit {g}^\ textit {n} $ conv),该卷积{n} $ conv)与封闭的卷积和递归设计执行高阶空间交互。新操作是高度灵活和可定制的,它与卷积的各种变体兼容,并将自我注意的两阶相互作用扩展到任意订单,而无需引入大量额外的计算。 $ \ textit {g}^\ textit {n} $ conv可以用作插件模块,以改善各种视觉变压器和基于卷积的模型。根据该操作,我们构建了一个名为Hornet的新型通用视觉骨干家族。关于ImageNet分类,可可对象检测和ADE20K语义分割的广泛实验表明,大黄蜂的表现优于Swin变形金刚,并具有相似的整体体系结构和训练配置的明显边距。大黄蜂还显示出对更多训练数据和更大模型大小的有利可伸缩性。除了在视觉编码器中的有效性外,我们还可以将$ \ textit {g}^\ textit {n} $ conv应用于特定于任务的解码器,并始终通过较少的计算来提高密集的预测性能。我们的结果表明,$ \ textIt {g}^\ textit {n} $ conv可以成为视觉建模的新基本模块,可有效结合视觉变形金刚和CNN的优点。代码可从https://github.com/raoyongming/hornet获得
translated by 谷歌翻译