在本文中,我们将多尺度视觉变压器(MVIT)作为图像和视频分类的统一架构,以及对象检测。我们提出了一种改进的MVIT版本,它包含分解的相对位置嵌入和残余汇集连接。我们以五种尺寸实例化此架构,并评估Imagenet分类,COCO检测和动力学视频识别,在此优先效果。我们进一步比较了MVITS的汇集注意力来窗口注意力机制,其中它在准确性/计算中优于后者。如果没有钟声,MVIT在3个域中具有最先进的性能:ImageNet分类的准确性为88.8%,Coco对象检测的56.1盒AP和动力学-400视频分类的86.1%。代码和模型将公开可用。
translated by 谷歌翻译
We present Multiscale Vision Transformers (MViT) for video and image recognition, by connecting the seminal idea of multiscale feature hierarchies with transformer models. Multiscale Transformers have several channel-resolution scale stages. Starting from the input resolution and a small channel dimension, the stages hierarchically expand the channel capacity while reducing the spatial resolution. This creates a multiscale pyramid of features with early layers operating at high spatial resolution to model simple low-level visual information, and deeper layers at spatially coarse, but complex, high-dimensional features. We evaluate this fundamental architectural prior for modeling the dense nature of visual signals for a variety of video recognition tasks where it outperforms concurrent vision transformers that rely on large scale external pre-training and are 5-10× more costly in computation and parameters. We further remove the temporal dimension and apply our model for image classification where it outperforms prior work on vision transformers. Code is available at: https: //github.com/facebookresearch/SlowFast.
translated by 谷歌翻译
This paper presents a new vision Transformer, called Swin Transformer, that capably serves as a general-purpose backbone for computer vision. Challenges in adapting Transformer from language to vision arise from differences between the two domains, such as large variations in the scale of visual entities and the high resolution of pixels in images compared to words in text. To address these differences, we propose a hierarchical Transformer whose representation is computed with Shifted windows. The shifted windowing scheme brings greater efficiency by limiting self-attention computation to non-overlapping local windows while also allowing for cross-window connection. This hierarchical architecture has the flexibility to model at various scales and has linear computational complexity with respect to image size. These qualities of Swin Transformer make it compatible with a broad range of vision tasks, including image classification (87.3 top-1 accuracy on ImageNet-1K) and dense prediction tasks such as object detection (58.7 box AP and 51.1 mask AP on COCO testdev) and semantic segmentation (53.5 mIoU on ADE20K val). Its performance surpasses the previous state-of-theart by a large margin of +2.7 box AP and +2.6 mask AP on COCO, and +3.2 mIoU on ADE20K, demonstrating the potential of Transformer-based models as vision backbones. The hierarchical design and the shifted window approach also prove beneficial for all-MLP architectures. The code and models are publicly available at https://github. com/microsoft/Swin-Transformer.
translated by 谷歌翻译
我们介绍克斯内变压器,一种高效且有效的变压器的骨干,用于通用视觉任务。变压器设计的具有挑战性的问题是,全球自我关注来计算成本昂贵,而局部自我关注经常限制每个令牌的相互作用。为了解决这个问题,我们开发了以平行的横向和垂直条纹在水平和垂直条纹中计算自我关注的交叉形窗口自我关注机制,通过将输入特征分成相等的条纹而获得的每个条纹宽度。我们提供了条纹宽度效果的数学分析,并改变变压器网络的不同层的条纹宽度,这在限制计算成本时实现了强大的建模能力。我们还介绍了本地增强的位置编码(LEPE),比现有的编码方案更好地处理本地位置信息。 LEPE自然支持任意输入分辨率,因此对下游任务特别有效和友好。 CSWIN变压器并入其具有这些设计和分层结构,展示了普通愿景任务的竞争性能。具体来说,它在ImageNet-1K上实现了85.4 \%Top-1精度,而无需任何额外的培训数据或标签,53.9盒AP和46.4掩模AP,ADE20K语义分割任务上的52.2 Miou,超过以前的状态 - 在类似的拖鞋设置下,艺术品+1.2,+2.0,+1.4和+2.0分别为+1.2,+2.0,+1.4和+2.0。通过在较大的数据集Imagenet-21k上进行前预先预订,我们在Ave20K上实现了87.5%的成像-1K和高分性能,55.7 miou。代码和模型可在https://github.com/microsoft/cswin-transformer中找到。
translated by 谷歌翻译
我们探索普通的非层次视觉变压器(VIT)作为用于对象检测的骨干网络。该设计使原始的VIT体系结构可以进行微调以进行对象检测,而无需重新设计层次结构的主链以进行预训练。随着微调的最低适应性,我们的纯净背骨检测器可以取得竞争成果。令人惊讶的是,我们观察到:(i)足以从单尺度特征映射(没有常见的FPN设计)构建一个简单的特征金字塔,并且(ii)足以使用窗户注意力(无需转移),很少有帮助跨窗口传播块。凭借普通的VIT骨架作为掩盖自动编码器(MAE),我们的探测器(名为VITDET)可以与先前基于层次结构骨架的先前领先方法竞争,仅使用ImagEnet-1k Pre Pre pre to Coco Dataset上的61.3 ap_box竞争-训练。我们希望我们的研究能够引起人们对普通背骨检测器的研究。 VITDET的代码可在detectron2中获得。
translated by 谷歌翻译
对象检测是用于测试预先训练的网络参数的中央下游任务是否达到益处,例如提高准确度或训练速度。当新架构(如视觉变压器(VIT)模型到达时,物体检测方法的复杂性可以使该基准是非微不足道的。这些困难(例如,架构不相容,慢训练,高记忆消耗,未知的培训公式等)已经阻止了最近通过标准VIT模型进行了基准测试转移学习的研究。在本文中,我们提出了克服这些挑战的培训技术,使得使用标准的VT模型作为面膜R-CNN的骨干。这些工具促进了我们研究的主要目标:我们比较五种Vit初始化,包括最近的最先进的自我监督的学习方法,监督初始化和强大的随机初始化基线。我们的研究结果表明,最近基于掩蔽的无监督学习方法可能是在COCO的令人信服的转移学习改进,将箱子AP增加到4%(绝对)的监督和先前自我监督的预训练方法。此外,基于掩蔽的初始化比例更好,随着模型尺寸的增加而增长的提高。
translated by 谷歌翻译
vision变压器(VIT)最近在图像分类上实现了对卷积神经网络(CNNS)的可比结果的强大能力。然而,Vanilla Vit只是直接从自然语言处理继承相同的架构,这通常不会针对视觉应用进行优化。在这篇文章的推动中,我们提出了一种采用金字塔结构的新架构,并在视觉变压器中采用新的区域到局部关注,而不是全球自我关注。更具体地,我们的模型首先从具有不同补丁大小的图像生成区域令牌和本地标记,其中每个区域令牌与基于空间位置的一组本地代币相关联。区域到当地的注意力包括两个步骤:第一,区域自我关注提取所有区域代币之间的全球信息,然后通过自我关注将局部自我关注与相关的本地代币之间的信息交换。因此,尽管局部自我关注限制了当地区域的范围,但它仍然可以接收全球信息。在四个视觉任务中进行广泛的实验,包括图像分类,对象和关键点检测,语义分割和动作识别,表明我们的方法优于或与最先进的Vit变体(包括许多并发作品)的差异。我们的源代码和模型可在https://github.com/ibm/regionvit上使用。
translated by 谷歌翻译
视觉识别的“咆哮20S”开始引入视觉变压器(VITS),这将被取代的Cummnets作为最先进的图像分类模型。另一方面,vanilla vit,当应用于一般计算机视觉任务等对象检测和语义分割时面临困难。它是重新引入多个ConvNet Priors的等级变压器(例如,Swin变压器),使变压器实际上可作为通用视觉骨干网,并在各种视觉任务上展示了显着性能。然而,这种混合方法的有效性仍然在很大程度上归功于变压器的内在优越性,而不是卷积的固有感应偏差。在这项工作中,我们重新审视设计空间并测试纯粹的Convnet可以实现的限制。我们逐渐“现代化”标准Reset朝着视觉变压器的设计设计,并发现几个有助于沿途绩效差异的关键组件。此探索的结果是一个纯粹的ConvNet型号被称为ConvNext。完全由标准的Convnet模块构建,ConvNexts在准确性和可扩展性方面与变压器竞争,实现了87.8%的ImageNet Top-1精度和表现优于COCO检测和ADE20K分割的Swin变压器,同时保持了标准Convnet的简单性和效率。
translated by 谷歌翻译
本文提出了RESTV2,这是一种更简单,更快,更强的多尺度视觉变压器,用于视觉识别。 RESTV2简化了RESTV1中的EMSA结构(即消除了多头相互作用零件),并采用了upplame操作来重建由下采样操作引起的丢失的中等和高频信息。此外,我们探索了不同的技术,以更好地将RESTV2骨架应用于下游任务。我们发现,尽管将EMSAV2和窗户注意力结合起来可以大大减少理论矩阵乘数拖台,但它可能会大大降低计算密度,从而导致较低的实际速度。我们全面验证RESTV2在Imagenet分类,可可检测和ADE20K语义分割方面。实验结果表明,所提出的RESTV2可以大幅度优于最近最新的骨干,这表明RESTV2作为固体骨架的潜力。代码和模型将在\ url {https://github.com/wofmanaf/rest}公开可用
translated by 谷歌翻译
诸如对象检测和分割等密集的计算机视觉任务需要有效的多尺度特征表示,用于检测或分类具有不同大小的对象或区域。虽然卷积神经网络(CNNS)是这种任务的主导架构,但最近引入了视觉变压器(VITS)的目标是将它们替换为骨干。类似于CNN,VITS构建一个简单的多级结构(即,细致粗略),用于使用单尺度补丁进行多尺度表示。在这项工作中,通过从现有变压器的不同角度来看,我们探索了多尺度补丁嵌入和多路径结构,构建了多路径视觉变压器(MPVIT)。 MPVIT通过使用重叠的卷积贴片嵌入,将相同尺寸〜(即,序列长度,序列长度,序列长度的序列长度)嵌入不同尺度的斑块。然后,通过多个路径独立地将不同尺度的令牌独立地馈送到变压器编码器,并且可以聚合产生的特征,使得能够在相同特征级别的精细和粗糙的特征表示。由于多样化,多尺寸特征表示,我们的MPVits从微小〜(5m)缩放到基础〜(73米)一直在想象成分,对象检测,实例分段上的最先进的视觉变压器来实现卓越的性能,和语义细分。这些广泛的结果表明,MPVIT可以作为各种视觉任务的多功能骨干网。代码将在\ url {https://git.io/mpvit}上公开可用。
translated by 谷歌翻译
视觉变压器的最新进展在基于点产生自我注意的新空间建模机制驱动的各种任务中取得了巨大成功。在本文中,我们表明,视觉变压器背后的关键要素,即输入自适应,远程和高阶空间相互作用,也可以通过基于卷积的框架有效地实现。我们介绍了递归封闭式卷积($ \ textit {g}^\ textit {n} $ conv),该卷积{n} $ conv)与封闭的卷积和递归设计执行高阶空间交互。新操作是高度灵活和可定制的,它与卷积的各种变体兼容,并将自我注意的两阶相互作用扩展到任意订单,而无需引入大量额外的计算。 $ \ textit {g}^\ textit {n} $ conv可以用作插件模块,以改善各种视觉变压器和基于卷积的模型。根据该操作,我们构建了一个名为Hornet的新型通用视觉骨干家族。关于ImageNet分类,可可对象检测和ADE20K语义分割的广泛实验表明,大黄蜂的表现优于Swin变形金刚,并具有相似的整体体系结构和训练配置的明显边距。大黄蜂还显示出对更多训练数据和更大模型大小的有利可伸缩性。除了在视觉编码器中的有效性外,我们还可以将$ \ textit {g}^\ textit {n} $ conv应用于特定于任务的解码器,并始终通过较少的计算来提高密集的预测性能。我们的结果表明,$ \ textIt {g}^\ textit {n} $ conv可以成为视觉建模的新基本模块,可有效结合视觉变形金刚和CNN的优点。代码可从https://github.com/raoyongming/hornet获得
translated by 谷歌翻译
Vision Transformers (ViTs) have achieved overwhelming success, yet they suffer from vulnerable resolution scalability, i.e., the performance drops drastically when presented with input resolutions that are unseen during training. We introduce, ResFormer, a framework that is built upon the seminal idea of multi-resolution training for improved performance on a wide spectrum of, mostly unseen, testing resolutions. In particular, ResFormer operates on replicated images of different resolutions and enforces a scale consistency loss to engage interactive information across different scales. More importantly, to alternate among varying resolutions, we propose a global-local positional embedding strategy that changes smoothly conditioned on input sizes. This allows ResFormer to cope with novel resolutions effectively. We conduct extensive experiments for image classification on ImageNet. The results provide strong quantitative evidence that ResFormer has promising scaling abilities towards a wide range resolutions. For instance, ResFormer-B-MR achieves a Top-1 accuracy of 75.86% and 81.72% when evaluated on relatively low and high resolutions respectively (i.e., 96 and 640), which are 48% and 7.49% better than DeiT-B. We also demonstrate, among other things, ResFormer is flexible and can be easily extended to semantic segmentation and video action recognition.
translated by 谷歌翻译
We present SlowFast networks for video recognition. Our model involves (i) a Slow pathway, operating at low frame rate, to capture spatial semantics, and (ii) a Fast pathway, operating at high frame rate, to capture motion at fine temporal resolution. The Fast pathway can be made very lightweight by reducing its channel capacity, yet can learn useful temporal information for video recognition. Our models achieve strong performance for both action classification and detection in video, and large improvements are pin-pointed as contributions by our SlowFast concept. We report state-of-the-art accuracy on major video recognition benchmarks, Kinetics, Charades and AVA. Code has been made available at: https://github.com/ facebookresearch/SlowFast.
translated by 谷歌翻译
我们呈现蒙版特征预测(MaskFeat),用于自我监督的视频模型的预训练。我们的方法首先随机地掩盖输入序列的一部分,然后预测蒙面区域的特征。我们研究五种不同类型的功能,找到面向导向渐变(HOG)的直方图,手工制作的特征描述符,在性能和效率方面尤其良好。我们观察到猪中的局部对比标准化对于良好的结果至关重要,这与使用HOG进行视觉识别的早期工作符合。我们的方法可以学习丰富的视觉知识和基于大规模的变压器的模型。在不使用额外的模型重量或监督的情况下,在未标记视频上预先培训的MaskFeat在动力学-400上使用MVIT-L达到86.7%的前所未有的结果,在动力学-600,88.3%上,88.3%,在动力学-700,88.8地图上SSV2上的75.0%。 MaskFeat进一步推广到图像输入,其可以被解释为具有单个帧的视频,并在想象中获得竞争结果。
translated by 谷歌翻译
We present the Group Propagation Vision Transformer (GPViT): a novel nonhierarchical (i.e. non-pyramidal) transformer model designed for general visual recognition with high-resolution features. High-resolution features (or tokens) are a natural fit for tasks that involve perceiving fine-grained details such as detection and segmentation, but exchanging global information between these features is expensive in memory and computation because of the way self-attention scales. We provide a highly efficient alternative Group Propagation Block (GP Block) to exchange global information. In each GP Block, features are first grouped together by a fixed number of learnable group tokens; we then perform Group Propagation where global information is exchanged between the grouped features; finally, global information in the updated grouped features is returned back to the image features through a transformer decoder. We evaluate GPViT on a variety of visual recognition tasks including image classification, semantic segmentation, object detection, and instance segmentation. Our method achieves significant performance gains over previous works across all tasks, especially on tasks that require high-resolution outputs, for example, our GPViT-L3 outperforms Swin Transformer-B by 2.0 mIoU on ADE20K semantic segmentation with only half as many parameters. Code and pre-trained models are available at https://github.com/ChenhongyiYang/GPViT .
translated by 谷歌翻译
视觉变压器由于能够捕获图像中的长期依赖性的能力而成功地应用于图像识别任务。但是,变压器与现有卷积神经网络(CNN)之间的性能和计算成本仍然存在差距。在本文中,我们旨在解决此问题,并开发一个网络,该网络不仅可以超越规范变压器,而且可以超越高性能卷积模型。我们通过利用变压器来捕获长期依赖性和CNN来建模本地特征,从而提出了一个新的基于变压器的混合网络。此外,我们将其扩展为获得一个称为CMT的模型家族,比以前的基于卷积和基于变压器的模型获得了更好的准确性和效率。特别是,我们的CMT-S在ImageNet上获得了83.5%的TOP-1精度,而在拖鞋上的拖曳率分别比现有的DEIT和EficitiveNet小14倍和2倍。拟议的CMT-S还可以很好地概括CIFAR10(99.2%),CIFAR100(91.7%),花(98.7%)以及其他具有挑战性的视觉数据集,例如可可(44.3%地图),计算成本较小。
translated by 谷歌翻译
香草自我注意的机制固有地依赖于预定和坚定的计算维度。这种僵化的性限制了它具有面向上下文的概括,可以带来更多的上下文提示和全球表示。为了减轻此问题,我们提出了一种可扩展的自我注意(SSA)机制,该机制利用两个缩放因素来释放查询,键和价值矩阵的维度,同时使它们不符合输入。这种可伸缩性可获得面向上下文的概括并增强对象灵敏度,从而将整个网络推向准确性和成本之间的更有效的权衡状态。此外,我们提出了一个基于窗口的自我注意事项(IWSA),该自我注意力(IWSA)通过重新合并独立的值代币并从相邻窗口中汇总空间信息来建立非重叠区域之间的相互作用。通过交替堆叠SSA和IWSA,可扩展的视觉变压器(可伸缩率)在通用视觉任务中实现最先进的性能。例如,在Imagenet-1K分类中,可伸缩率S的表现优于双胞胎-SVT-S,而Swin-T则比1.4%。
translated by 谷歌翻译
本文解决了由多头自我注意力(MHSA)中高计算/空间复杂性引起的视觉变压器的低效率缺陷。为此,我们提出了层次MHSA(H-MHSA),其表示以层次方式计算。具体而言,我们首先将输入图像分为通常完成的补丁,每个补丁都被视为令牌。然后,拟议的H-MHSA学习本地贴片中的令牌关系,作为局部关系建模。然后,将小贴片合并为较大的贴片,H-MHSA对少量合并令牌的全局依赖性建模。最后,汇总了本地和全球专注的功能,以获得具有强大表示能力的功能。由于我们仅在每个步骤中计算有限数量的令牌的注意力,因此大大减少了计算负载。因此,H-MHSA可以在不牺牲细粒度信息的情况下有效地模拟令牌之间的全局关系。使用H-MHSA模块合并,我们建立了一个基于层次的变压器网络的家族,即HAT-NET。为了证明在场景理解中HAT-NET的优越性,我们就基本视觉任务进行了广泛的实验,包括图像分类,语义分割,对象检测和实例细分。因此,HAT-NET为视觉变压器提供了新的视角。可以在https://github.com/yun-liu/hat-net上获得代码和预估计的模型。
translated by 谷歌翻译
视觉表示学习是解决各种视力问题的关键。依靠开创性的网格结构先验,卷积神经网络(CNN)已成为大多数深视觉模型的事实上的标准架构。例如,经典的语义分割方法通常采用带有编码器编码器体系结构的完全横向卷积网络(FCN)。编码器逐渐减少了空间分辨率,并通过更大的接受场来学习更多抽象的视觉概念。由于上下文建模对于分割至关重要,因此最新的努力一直集中在通过扩张(即极度)卷积或插入注意力模块来增加接受场。但是,基于FCN的体系结构保持不变。在本文中,我们旨在通过将视觉表示学习作为序列到序列预测任务来提供替代观点。具体而言,我们部署纯变压器以将图像编码为一系列贴片,而无需局部卷积和分辨率减少。通过在变压器的每一层中建立的全球环境,可以学习更强大的视觉表示形式,以更好地解决视力任务。特别是,我们的细分模型(称为分割变压器(SETR))在ADE20K上擅长(50.28%MIOU,这是提交当天测试排行榜中的第一个位置),Pascal环境(55.83%MIOU),并在CityScapes上达到竞争成果。此外,我们制定了一个分层局部全球(HLG)变压器的家族,其特征是窗户内的本地关注和跨窗户的全球性专注于层次结构和金字塔架构。广泛的实验表明,我们的方法在各种视觉识别任务(例如,图像分类,对象检测和实例分割和语义分割)上实现了吸引力的性能。
translated by 谷歌翻译
Transformer最近提出了令人鼓舞的计算机视觉进展。在这项工作中,我们通过添加三个设计,包括(1)线性复杂性注意层,(2)重叠的补丁嵌入和(3)卷积进料网络,通过添加三个设计来提高原始金字塔视觉变压器(PVT V1)来展示新的基线。通过这些修改,PVT V2将PVT V1的计算复杂性降低到线性,并在类别,检测和分割等基本视觉任务上取得了重大改进。值得注意的是,所提出的PVT V2比最近的作品(例如Swin Transformer)取得了可比或更好的性能。我们希望这项工作将促进计算机视觉中最新的变压器研究。代码可在https://github.com/whai362/pvt上找到。
translated by 谷歌翻译