几乎所有场景文本发现(检测和识别)方法依赖于昂贵的框注释(例如,文本线框,单词级框和字符级框)。我们首次证明培训场景文本发现模型可以通过每个实例的单点的极低成本注释来实现。我们提出了一种端到端的场景文本发现方法,将场景文本拍摄作为序列预测任务,如语言建模。给予图像作为输入,我们将所需的检测和识别结果作为一系列离散令牌制定,并使用自动回归变压器来预测序列。我们在几个水平,多面向和任意形状的场景文本基准上实现了有希望的结果。最重要的是,我们表明性能对点注释的位置不是很敏感,这意味着它可以比需要精确位置的边界盒更容易地注释并自动生成。我们认为,这种先锋尝试表明了场景文本的重要机会,比以前可能的比例更大的比例更大。
translated by 谷歌翻译
典型的文本检测器遵循两阶段的发现策略:首先检测文本实例的精确边界,然后在定期的文本区域内执行文本识别。尽管这种策略取得了实质性进展,但有两个基本的局限性。 1)文本识别的性能在很大程度上取决于文本检测的精度,从而导致从检测到识别的潜在误差传播。 2)桥接检测和识别的ROI种植会带来背景的噪音,并在合并或从特征地图中插值时导致信息丢失。在这项工作中,我们提出了单个镜头自力更生的场景文本sottter(SRSTS),该场景通过将识别解除识别来规避这些限制。具体而言,我们并行进行文本检测和识别,并通过共享的积极锚点架起它们。因此,即使确切的文本边界要检测到具有挑战性,我们的方法也能够正确识别文本实例。此外,我们的方法可大大降低文本检测的注释成本。在常规基准和任意形状的基准上进行了广泛的实验表明,就准确性和效率而言,我们的SRST与以前的最先进的观察者相比有利。
translated by 谷歌翻译
Recently, models based on deep neural networks have dominated the fields of scene text detection and recognition. In this paper, we investigate the problem of scene text spotting, which aims at simultaneous text detection and recognition in natural images. An end-to-end trainable neural network model for scene text spotting is proposed. The proposed model, named as Mask TextSpotter, is inspired by the newly published work Mask R-CNN. Different from previous methods that also accomplish text spotting with end-to-end trainable deep neural networks, Mask TextSpotter takes advantage of simple and smooth end-to-end learning procedure, in which precise text detection and recognition are acquired via semantic segmentation. Moreover, it is superior to previous methods in handling text instances of irregular shapes, for example, curved text. Experiments on ICDAR2013, ICDAR2015 and Total-Text demonstrate that the proposed method achieves state-of-the-art results in both scene text detection and end-to-end text recognition tasks.
translated by 谷歌翻译
由于字体,大小,颜色和方向的各种文本变化,任意形状的场景文本检测是一项具有挑战性的任务。大多数现有基于回归的方法求助于回归文本区域的口罩或轮廓点以建模文本实例。但是,回归完整的口罩需要高训练的复杂性,并且轮廓点不足以捕获高度弯曲的文本的细节。为了解决上述限制,我们提出了一个名为TextDCT的新颖的轻巧锚文本检测框架,该框架采用离散的余弦变换(DCT)将文本掩码编码为紧凑型向量。此外,考虑到金字塔层中训练样本不平衡的数量,我们仅采用单层头来进行自上而下的预测。为了建模单层头部的多尺度文本,我们通过将缩水文本区域视为正样本,并通过融合来介绍一个新颖的积极抽样策略,并通过融合来设计特征意识模块(FAM),以实现空间意识和规模的意识丰富的上下文信息并关注更重要的功能。此外,我们提出了一种分割的非量最大抑制(S-NMS)方法,该方法可以过滤低质量的掩模回归。在四个具有挑战性的数据集上进行了广泛的实验,这表明我们的TextDCT在准确性和效率上都获得了竞争性能。具体而言,TextDCT分别以每秒17.2帧(FPS)和F-measure的F-MEASIE达到85.1,而CTW1500和Total-Text数据集的F-Measure 84.9分别为15.1 fps。
translated by 谷歌翻译
几十年来,手写的中文文本识别(HCTR)一直是一个活跃的研究主题。但是,大多数以前的研究仅关注裁剪文本图像的识别,而忽略了实际应用程序中文本线检测引起的错误。尽管近年来已经提出了一些针对页面文本识别的方法,但它们要么仅限于简单布局,要么需要非常详细的注释,包括昂贵的线条级别甚至角色级边界框。为此,我们建议Pagenet端到端弱监督的页面级HCTR。 Pagenet检测并识别角色并预测其之间的阅读顺序,在处理复杂的布局(包括多方向和弯曲的文本线路)时,这更健壮和灵活。利用所提出的弱监督学习框架,Pagenet只需要对真实数据进行注释。但是,它仍然可以在字符和线级别上输出检测和识别结果,从而避免标记字符和文本线条的界限框的劳动和成本。在五个数据集上进行的广泛实验证明了Pagenet优于现有的弱监督和完全监督的页面级方法。这些实验结果可能会引发进一步的研究,而不是基于连接主义时间分类或注意力的现有方法的领域。源代码可在https://github.com/shannanyinxiang/pagenet上获得。
translated by 谷歌翻译
Scene text spotting is of great importance to the computer vision community due to its wide variety of applications. Recent methods attempt to introduce linguistic knowledge for challenging recognition rather than pure visual classification. However, how to effectively model the linguistic rules in end-to-end deep networks remains a research challenge. In this paper, we argue that the limited capacity of language models comes from 1) implicit language modeling; 2) unidirectional feature representation; and 3) language model with noise input. Correspondingly, we propose an autonomous, bidirectional and iterative ABINet++ for scene text spotting. Firstly, the autonomous suggests enforcing explicitly language modeling by decoupling the recognizer into vision model and language model and blocking gradient flow between both models. Secondly, a novel bidirectional cloze network (BCN) as the language model is proposed based on bidirectional feature representation. Thirdly, we propose an execution manner of iterative correction for the language model which can effectively alleviate the impact of noise input. Finally, to polish ABINet++ in long text recognition, we propose to aggregate horizontal features by embedding Transformer units inside a U-Net, and design a position and content attention module which integrates character order and content to attend to character features precisely. ABINet++ achieves state-of-the-art performance on both scene text recognition and scene text spotting benchmarks, which consistently demonstrates the superiority of our method in various environments especially on low-quality images. Besides, extensive experiments including in English and Chinese also prove that, a text spotter that incorporates our language modeling method can significantly improve its performance both in accuracy and speed compared with commonly used attention-based recognizers.
translated by 谷歌翻译
从卷积神经网络的快速发展中受益,汽车牌照检测和识别的性能得到了很大的改善。但是,大多数现有方法分别解决了检测和识别问题,并专注于特定方案,这阻碍了现实世界应用的部署。为了克服这些挑战,我们提出了一个有效而准确的框架,以同时解决车牌检测和识别任务。这是一个轻巧且统一的深神经网络,可以实时优化端到端。具体而言,对于不受约束的场景,采用了无锚方法来有效检测车牌的边界框和四个角,这些框用于提取和纠正目标区域特征。然后,新型的卷积神经网络分支旨在进一步提取角色的特征而不分割。最后,将识别任务视为序列标记问题,这些问题通过连接派时间分类(CTC)解决。选择了几个公共数据集,包括在各种条件下从不同方案中收集的图像进行评估。实验结果表明,所提出的方法在速度和精度上都显着优于先前的最新方法。
translated by 谷歌翻译
任意形状的文本检测是一项具有挑战性的任务,这是由于大小和宽高比,任意取向或形状,不准确的注释等各种变化的任务。最近引起了大量关注。但是,文本的准确像素级注释是强大的,现有的场景文本检测数据集仅提供粗粒的边界注释。因此,始终存在大量错误分类的文本像素或背景像素,从而降低基于分割的文本检测方法的性能。一般来说,像素是否属于文本与与相邻注释边界的距离高度相关。通过此观察,在本文中,我们通过概率图提出了一种创新且可靠的基于分割的检测方法,以准确检测文本实例。为了具体,我们采用Sigmoid alpha函数(SAF)将边界及其内部像素之间的距离传输到概率图。但是,由于粗粒度文本边界注释的不确定性,一个概率图无法很好地覆盖复杂的概率分布。因此,我们采用一组由一系列Sigmoid alpha函数计算出的概率图来描述可能的概率分布。此外,我们提出了一个迭代模型,以学习预测和吸收概率图,以提供足够的信息来重建文本实例。最后,采用简单的区域生长算法来汇总概率图以完成文本实例。实验结果表明,我们的方法在几个基准的检测准确性方面实现了最先进的性能。
translated by 谷歌翻译
我们介绍了一种名为RobustAbnet的新表检测和结构识别方法,以检测表的边界并从异质文档图像中重建每个表的细胞结构。为了进行表检测,我们建议将Cornernet用作新的区域建议网络来生成更高质量的表建议,以更快的R-CNN,这显着提高了更快的R-CNN的定位准确性以进行表检测。因此,我们的表检测方法仅使用轻巧的RESNET-18骨干网络,在三个公共表检测基准(即CTDAR TRACKA,PUBLAYNET和IIIT-AR-13K)上实现最新性能。此外,我们提出了一种新的基于分裂和合并的表结构识别方法,其中提出了一个新型的基于CNN的新空间CNN分离线预测模块将每个检测到的表分为单元格,并且基于网格CNN的CNN合并模块是应用用于恢复生成细胞。由于空间CNN模块可以有效地在整个表图像上传播上下文信息,因此我们的表结构识别器可以坚固地识别具有较大的空白空间和几何扭曲(甚至弯曲)表的表。得益于这两种技术,我们的表结构识别方法在包括SCITSR,PubTabnet和CTDAR TrackB2-Modern在内的三个公共基准上实现了最先进的性能。此外,我们进一步证明了我们方法在识别具有复杂结构,大空间以及几何扭曲甚至弯曲形状的表上的表格上的优势。
translated by 谷歌翻译
Leveraging the advances of natural language processing, most recent scene text recognizers adopt an encoder-decoder architecture where text images are first converted to representative features and then a sequence of characters via `sequential decoding'. However, scene text images suffer from rich noises of different sources such as complex background and geometric distortions which often confuse the decoder and lead to incorrect alignment of visual features at noisy decoding time steps. This paper presents I2C2W, a novel scene text recognition technique that is tolerant to geometric and photometric degradation by decomposing scene text recognition into two inter-connected tasks. The first task focuses on image-to-character (I2C) mapping which detects a set of character candidates from images based on different alignments of visual features in an non-sequential way. The second task tackles character-to-word (C2W) mapping which recognizes scene text by decoding words from the detected character candidates. The direct learning from character semantics (instead of noisy image features) corrects falsely detected character candidates effectively which improves the final text recognition accuracy greatly. Extensive experiments over nine public datasets show that the proposed I2C2W outperforms the state-of-the-art by large margins for challenging scene text datasets with various curvature and perspective distortions. It also achieves very competitive recognition performance over multiple normal scene text datasets.
translated by 谷歌翻译
在线和离线手写的中文文本识别(HTCR)已经研究了数十年。早期方法采用了基于过度裂段的策略,但遭受低速,准确性不足和角色分割注释的高成本。最近,基于连接主义者时间分类(CTC)和注意机制的无分割方法主导了HCTR的领域。但是,人们实际上是按字符读取文本的,尤其是对于中文等意识形态图。这就提出了一个问题:无细分策略真的是HCTR的最佳解决方案吗?为了探索此问题,我们提出了一种基于细分的新方法,用于识别使用简单但有效的完全卷积网络实现的手写中文文本。提出了一种新型的弱监督学习方法,以使网络仅使用笔录注释进行训练。因此,可以避免以前基于细分的方法所需的昂贵字符分割注释。由于缺乏完全卷积网络中的上下文建模,我们提出了一种上下文正则化方法,以在培训阶段将上下文信息集成到网络中,这可以进一步改善识别性能。在四个广泛使用的基准测试中进行的广泛实验,即Casia-HWDB,Casia-Olhwdb,ICDAR2013和Scut-HCCDOC,表明我们的方法在线和离线HCTR上都显着超过了现有方法,并且表现出比CTC/ CTC/ CTC/ CTC/ CTC/速度高得多的方法。基于注意力的方法。
translated by 谷歌翻译
近年来,文本发现的主要范例是将文本检测和识别的任务结合到一个端到端的框架中。在此范式下,这两个任务都是通过从输入图像中提取的共享全局特征图操作来完成的。端到端方法面临的主要挑战之一是识别跨音阶变化(较小或较大的文本)和任意单词旋转角的文本时的性能退化。在这项工作中,我们通过提出一种新型的全球到本地关注机制来解决这些挑战,用于文本斑点,称为玻璃,将全球和本地特征融合在一起。全局功能是从共享骨干线中提取的,从整个图像中保留上下文信息,而本地功能则在调整大小的高分辨率旋转的单词作物上单独计算。从当地农作物中提取的信息减轻了尺度和单词旋转的许多固有困难。我们显示了跨音阶和角度的性能分析,突出了尺度和角度的肢体的改善。此外,我们引入了一个方向感知的损失项,以监督检测任务,并显示其对所有角度的检测和识别性能的贡献。最后,我们通过将玻璃纳入其他领先的文本发现架构,改善其文本斑点性能来表明玻璃是一般的。我们的方法在包括新发布的Textocr在内的多个基准上实现了最新的结果。
translated by 谷歌翻译
最近的视频文本发现方法通常需要三个阶段的管道,即检测单个图像中的文本,识别本地化文本,跟踪文本流以及后处理以生成最终结果。这些方法通常遵循按匹配范式跟踪并开发复杂的管道。在本文中,植根于变压器序列建模,我们提出了一个简单但有效的端到端视频文本检测,跟踪和识别框架(TransDert)。转码主要包括两个优点:1)与相邻帧中的显式匹配范式不同,transdetr轨道和不同的匹配范围,并通过长期时间序列(超过7帧)隐含的不同查询所谓的文本查询隐式识别每个文本。 2)Transdetr是第一个端到端可训练的视频文本斑点框架,该框架同时介绍了三个子任务(例如,文本检测,跟踪,识别)。进行了四个视频文本数据集(即ICDAR2013视频,ICDAR2015视频,Minetto和YouTube视频文本)中的广泛实验,以证明Transdetr在预先的性能中达到了最大的表现,并且在视频文本发现任务方面的提高约为8.0%。 。可以在https://github.com/weijiawu/transdetr上找到Transdet的代码。
translated by 谷歌翻译
近年来,场景文本检测和识别的研究重点已转移到任意形状文本,文本形状表示是一个基本问题。理想的表示应紧凑,完整,高效和可重复使用,以便我们认为后续认可。但是,以前的表示在一个或多个方面存在缺陷。薄板间隙(TPS)转换在场景文本识别方面取得了巨大成功。受到这一点的启发,我们逆转了它的用法,并精致地将TPS视为任意形状文本表示的精美表示。 TPS表示是紧凑,完整和有效的。使用预测的TPS参数,可以将检测到的文本区域直接纠正到近冬季的参数,以帮助后续识别。为了进一步利用TPS表示的潜力,提出了边界对准损失。基于这些设计,我们实现了文本检测器tpsnet,可以方便地将其扩展到文本次数。对几个公共基准的广泛评估和消融表明,提出的文本表示和斑点方法的有效性和优势。特别是,TPSNET在ART数据集上实现了4.4 \%(78.4 \%vs. 74.0 \%)的检测F量改进,并且在5.0 \%(78.5 \%vs. 73.55)上进行了端到端的斑点f-Measure改进。 \%)在总文本上,这是没有铃铛和口哨的大边缘。
translated by 谷歌翻译
场景文本检测仍然是一个具有挑战性的任务,因为可能存在极小的小或低分辨率的笔划,并且关闭或任意形状的文本。在本文中,提出了通过捕获细粒度的笔划来有效地检测文本,并在图中的分层表示之间推断结构关系。不同于由一系列点或矩形框表示文本区域的现有方法,我们通过笔划辅助预测网络(SAPN)直接本地化每个文本实例的笔划。此外,采用分层关系图网络(HRGN)来执行关系推理和预测链接的可能性,有效地将关闭文本实例和分组节点分类结果分割成任意形状的文本区域。我们介绍了一个小型数据集,其中具有笔划级注释,即SyntheTroke,用于我们模型的脱机预培训。宽范围基准测试的实验验证了我们方法的最先进的性能。我们的数据集和代码将可用。
translated by 谷歌翻译
In contrast to fully supervised methods using pixel-wise mask labels, box-supervised instance segmentation takes advantage of simple box annotations, which has recently attracted increasing research attention. This paper presents a novel single-shot instance segmentation approach, namely Box2Mask, which integrates the classical level-set evolution model into deep neural network learning to achieve accurate mask prediction with only bounding box supervision. Specifically, both the input image and its deep features are employed to evolve the level-set curves implicitly, and a local consistency module based on a pixel affinity kernel is used to mine the local context and spatial relations. Two types of single-stage frameworks, i.e., CNN-based and transformer-based frameworks, are developed to empower the level-set evolution for box-supervised instance segmentation, and each framework consists of three essential components: instance-aware decoder, box-level matching assignment and level-set evolution. By minimizing the level-set energy function, the mask map of each instance can be iteratively optimized within its bounding box annotation. The experimental results on five challenging testbeds, covering general scenes, remote sensing, medical and scene text images, demonstrate the outstanding performance of our proposed Box2Mask approach for box-supervised instance segmentation. In particular, with the Swin-Transformer large backbone, our Box2Mask obtains 42.4% mask AP on COCO, which is on par with the recently developed fully mask-supervised methods. The code is available at: https://github.com/LiWentomng/boxlevelset.
translated by 谷歌翻译
随着深度卷积神经网络的兴起,对象检测在过去几年中取得了突出的进步。但是,这种繁荣无法掩盖小物体检测(SOD)的不令人满意的情况,这是计算机视觉中臭名昭著的挑战性任务之一,这是由于视觉外观不佳和由小目标的内在结构引起的嘈杂表示。此外,用于基准小对象检测方法基准测试的大规模数据集仍然是瓶颈。在本文中,我们首先对小物体检测进行了详尽的审查。然后,为了催化SOD的发展,我们分别构建了两个大规模的小物体检测数据集(SODA),SODA-D和SODA-A,分别集中在驾驶和空中场景上。 SODA-D包括24704个高质量的交通图像和277596个9个类别的实例。对于苏打水,我们收集2510个高分辨率航空图像,并在9个类别上注释800203实例。众所周知,拟议的数据集是有史以来首次尝试使用针对多类SOD量身定制的大量注释实例进行大规模基准测试。最后,我们评估主流方法在苏打水上的性能。我们预计发布的基准可以促进SOD的发展,并产生该领域的更多突破。数据集和代码将很快在:\ url {https://shaunyuan22.github.io/soda}上。
translated by 谷歌翻译
在过去的十年中,由于航空图像引起的物体的规模和取向的巨大变化,对象检测已经实现了自然图像中的显着进展,而不是在空中图像中。更重要的是,缺乏大规模基准已成为在航拍图像(ODAI)中对物体检测发展的主要障碍。在本文中,我们在航空图像(DotA)中的物体检测和用于ODAI的综合基线的大规模数据集。所提出的DOTA数据集包含1,793,658个对象实例,18个类别的面向边界盒注释从11,268个航拍图像中收集。基于该大规模和注释的数据集,我们构建了具有超过70个配置的10个最先进算法的基线,其中已经评估了每个模型的速度和精度性能。此外,我们为ODAI提供了一个代码库,并建立一个评估不同算法的网站。以前在Dota上运行的挑战吸引了全球1300多队。我们认为,扩大的大型DOTA数据集,广泛的基线,代码库和挑战可以促进鲁棒算法的设计和对空中图像对象检测问题的可再现研究。
translated by 谷歌翻译
在任意形状的文本检测中,定位准确的文本边界具有挑战性且不平淡。现有方法通常会遭受间接的文本边界建模或复杂的后处理。在本文中,我们通过边界学习进行系统地呈现一个统一的粗到精细的框架,以进行任意形状的文本检测,该框架可以准确有效地定位文本边界而无需后处理。在我们的方法中,我们通过创新的文本边界明确地对文本边界进行了明确模拟迭代边界变压器以粗到十的方式。这样,我们的方法可以直接获得准确的文本边界并放弃复杂的后处理以提高效率。具体而言,我们的方法主要由特征提取主链,边界建议模块和迭代优化的边界变压器模块组成。由多层扩张卷积组成的边界提案模块将计算重要的先验信息(包括分类图,距离场和方向场),以生成粗边界建议,同时指导边界变压器的优化。边界变压器模块采用编码器模块结构,其中编码器由具有残差连接的多层变压器块构造,而解码器是一个简单的多层perceptron网络(MLP)。在先验信息的指导下,边界变压器模块将通过迭代边界变形逐渐完善粗边界建议。此外,我们提出了一种新型的边界能量损失(BEL),该损失引入了能量最小化约束和单调减少约束的能量,以进一步优化和稳定边界细化的学习。关于公开可用和挑战数据集的广泛实验证明了我们方法的最先进性能和有希望的效率。
translated by 谷歌翻译
This study focuses on improving the optical character recognition (OCR) data for panels in the COMICS dataset, the largest dataset containing text and images from comic books. To do this, we developed a pipeline for OCR processing and labeling of comic books and created the first text detection and recognition datasets for western comics, called "COMICS Text+: Detection" and "COMICS Text+: Recognition". We evaluated the performance of state-of-the-art text detection and recognition models on these datasets and found significant improvement in word accuracy and normalized edit distance compared to the text in COMICS. We also created a new dataset called "COMICS Text+", which contains the extracted text from the textboxes in the COMICS dataset. Using the improved text data of COMICS Text+ in the comics processing model from resulted in state-of-the-art performance on cloze-style tasks without changing the model architecture. The COMICS Text+ dataset can be a valuable resource for researchers working on tasks including text detection, recognition, and high-level processing of comics, such as narrative understanding, character relations, and story generation. All the data and inference instructions can be accessed in https://github.com/gsoykan/comics_text_plus.
translated by 谷歌翻译