人工神经网络今天具有广泛的应用程序,因为它们的高度灵活性和从数据中建模非线性功能的能力。但是,由于其黑盒性质,从小型数据集概括的能力差以及在培训期间的不一致的融合,神经网络的可信度受到限制。铝电解是一个复杂的非线性过程,具有许多相互关联的子处理。人工神经网络可能非常适合对铝电解过程进行建模,但是此过程的安全性最关键的性质需要值得信赖的模型。在这项工作中,稀疏的神经网络经过训练,以建模铝电解模拟器的系统动力学。与相应的密集神经网络相比,稀疏模型结构的模型复杂性显着降低。我们认为这使模型更容易解释。此外,实证研究表明,稀疏模型比密集的神经网络从小型训练集中概括得更好。此外,训练具有不同参数初始化的稀疏神经网络的合奏表明,模型会收敛到具有相似学习的输入特征的相似模型结构。
translated by 谷歌翻译
随着数据的不断增加,将现代机器学习方法应用于建模和控制等领域的兴趣爆炸。但是,尽管这种黑盒模型具有灵活性和令人惊讶的准确性,但仍然很难信任它们。结合两种方法的最新努力旨在开发灵活的模型,这些模型仍然可以很好地推广。我们称为混合分析和建模(HAM)的范式。在这项工作中,我们调查了使用数据驱动模型纠正基于错误的物理模型的纠正源术语方法(COSTA)。这使我们能够开发出可以进行准确预测的模型,即使问题的基本物理学尚未得到充分理解。我们将Costa应用于铝电解电池中的Hall-H \'Eroult工艺。我们证明该方法提高了准确性和预测稳定性,从而产生了总体可信赖的模型。
translated by 谷歌翻译
Data-driven models such as neural networks are being applied more and more to safety-critical applications, such as the modeling and control of cyber-physical systems. Despite the flexibility of the approach, there are still concerns about the safety of these models in this context, as well as the need for large amounts of potentially expensive data. In particular, when long-term predictions are needed or frequent measurements are not available, the open-loop stability of the model becomes important. However, it is difficult to make such guarantees for complex black-box models such as neural networks, and prior work has shown that model stability is indeed an issue. In this work, we consider an aluminum extraction process where measurements of the internal state of the reactor are time-consuming and expensive. We model the process using neural networks and investigate the role of including skip connections in the network architecture as well as using l1 regularization to induce sparse connection weights. We demonstrate that these measures can greatly improve both the accuracy and the stability of the models for datasets of varying sizes.
translated by 谷歌翻译
物理信息的神经网络(PINN)是神经网络(NNS),它们作为神经网络本身的组成部分编码模型方程,例如部分微分方程(PDE)。如今,PINN是用于求解PDE,分数方程,积分分化方程和随机PDE的。这种新颖的方法已成为一个多任务学习框架,在该框架中,NN必须在减少PDE残差的同时拟合观察到的数据。本文对PINNS的文献进行了全面的综述:虽然该研究的主要目标是表征这些网络及其相关的优势和缺点。该综述还试图将出版物纳入更广泛的基于搭配的物理知识的神经网络,这些神经网络构成了香草·皮恩(Vanilla Pinn)以及许多其他变体,例如物理受限的神经网络(PCNN),各种HP-VPINN,变量HP-VPINN,VPINN,VPINN,变体。和保守的Pinn(CPINN)。该研究表明,大多数研究都集中在通过不同的激活功能,梯度优化技术,神经网络结构和损耗功能结构来定制PINN。尽管使用PINN的应用范围广泛,但通过证明其在某些情况下比有限元方法(FEM)等经典数值技术更可行的能力,但仍有可能的进步,最著名的是尚未解决的理论问题。
translated by 谷歌翻译
传统上,基于标度律维模型已被用于参数对流换热岩类地行星像地球,火星,水星和金星的内部,以解决二维或三维高保真前插的计算瓶颈。然而,这些在物理它们可以建模(例如深度取决于材料特性),并预测只平均量的量的限制,例如平均温度地幔。我们最近发现,前馈神经网络(FNN),使用了大量的二维模拟可以克服这个限制和可靠地预测整个1D横向平均温度分布的演变,及时为复杂的模型训练。我们现在扩展该方法以预测的完整2D温度字段,它包含在对流结构如热羽状和冷downwellings的形式的信息。使用的地幔热演化的10,525二维模拟数据集火星般的星球,我们表明,深度学习技术能够产生可靠的参数代理人(即代理人即预测仅基于参数状态变量,如温度)底层偏微分方程。我们首先使用卷积自动编码由142倍以压缩温度场,然后使用FNN和长短期存储器网络(LSTM)来预测所述压缩字段。平均起来,FNN预测是99.30%,并且LSTM预测是准确相对于看不见模拟99.22%。在LSTM和FNN预测显示,尽管较低的绝对平均相对精度,LSTMs捕捉血流动力学优于FNNS适当的正交分解(POD)。当求和,从FNN预测和从LSTM预测量至96.51%,相对97.66%到原始模拟的系数,分别与POD系数。
translated by 谷歌翻译
在这项工作中,我们介绍,证明并展示了纠正源期限方法(Costa) - 一种新的混合分析和建模(火腿)的新方法。 HAM的目标是将基于物理的建模(PBM)和数据驱动的建模(DDM)组合,以创建概括,值得信赖,准确,计算高效和自我不断发展的模型。 Costa通过使用深神经网络产生的纠正源期限增强PBM模型的控制方程来实现这一目标。在一系列关于一维热扩散的数值实验中,发现CostA在精度方面优于相当的DDM和PBM模型 - 通常通过几个数量级降低预测误差 - 同时也比纯DDM更好地概括。由于其灵活而稳定的理论基础,Costa提供了一种模块化框架,用于利用PBM和DDM中的新颖开发。其理论基础还确保了哥斯达队可以用来模拟由(确定性)部分微分方程所控制的任何系统。此外,Costa有助于在PBM的背景下解释DNN生成的源术语,这导致DNN的解释性改善。这些因素使哥斯达成为数据驱动技术的潜在门开启者,以进入先前为纯PBM保留的高赌注应用。
translated by 谷歌翻译
在概述中,引入了通用数学对象(映射),并解释了其与模型物理参数化的关系。引入了可用于模拟和/或近似映射的机器学习(ML)工具。ML的应用在模拟现有参数化,开发新的参数化,确保物理约束和控制开发应用程序的准确性。讨论了一些允许开发人员超越标准参数化范式的ML方法。
translated by 谷歌翻译
动态系统参见在物理,生物学,化学等自然科学中广泛使用,以及电路分析,计算流体动力学和控制等工程学科。对于简单的系统,可以通过应用基本物理法来导出管理动态的微分方程。然而,对于更复杂的系统,这种方法变得非常困难。数据驱动建模是一种替代范式,可以使用真实系统的观察来了解系统的动态的近似值。近年来,对数据驱动的建模技术的兴趣增加,特别是神经网络已被证明提供了解决广泛任务的有效框架。本文提供了使用神经网络构建动态系统模型的不同方式的调查。除了基础概述外,我们还审查了相关的文献,概述了这些建模范式必须克服的数值模拟中最重要的挑战。根据审查的文献和确定的挑战,我们提供了关于有前途的研究领域的讨论。
translated by 谷歌翻译
建模生物质的燃烧过程,如木材,草和作物,对野外和城市火灾行为的建模和预测至关重要。尽管重要的是,固体燃料的燃烧仍然很差,这可能部分归因于最固体燃料的未知化学动力学。最具可用的动力学模型建立在专业知识后,这需要化学洞察力和多年的经验。这项工作介绍了使用最近开发的化学反应神经网络(CRNN)自主地从热重分析仪(TGA)实验数据中自主发现生物质热解动力学模型的框架。该方法将CRNN模型掺入神经常微分方程的框架中,以预测TGA数据中的残余物质。除了基于神经网络的模型的灵活性之外,学习的CRNN模型是可解释的,通过将基本物理法则纳入神经网络结构的基本物理法,如大规模行动和阿列尼乌斯法则。然后可以将学习的CRNN模型转化为生物量化学动力学模型的经典形式,这有助于提取化学洞察和动力学模型将动力学模型集成到大规模的火灾模拟中。我们证明了框架在预测纤维素热解和氧化方面的有效性。这次成功的演示开辟了固体燃料的快速和自主化学动力学建模的可能性,例如野火燃料和工业聚合物。
translated by 谷歌翻译
使热处理可控的一种可能的方法是收集有关产品当前状态的实时信息。通常,感觉设备无法轻松或根本捕获所有相关信息。数字双胞胎在实时模拟中使用虚拟探针缩小了这一差距,并与该过程同步。本文提出了一个基于物理的,数据驱动的数字双框架,用于自动食品处理。我们建议使用设备级别可执行的精益数字双胞胎概念,需要最小的计算负载,数据存储和传感器数据要求。这项研究重点是用于热过程的非侵入性降低模型(ROM)的简约实验设计。在训练数据中表面温度的高标准偏差与ROM测试中的均方根误差之间的高标准偏差之间的相关性($ r = -0.76 $)可以有效地选择训练数据。最佳ROM的平均均方根误差小于代表性测试集的1 kelvin(0.2%平均平均百分比误差)。 SP $ \ $ 1.8E4的仿真速度允许进行设备模型预测控制。拟议的数字双框架旨在适用于行业。通常,一旦在未提供对求解器的根级访问(例如商业仿真软件)中执行该过程的建模,就需要一旦在软件中执行该过程的建模,就需要进行非侵入式降级建模。仅使用一个数据集就可以实现降顺序模型的数据驱动训练,因为使用相关性来预测训练成功。
translated by 谷歌翻译
这本数字本书包含在物理模拟的背景下与深度学习相关的一切实际和全面的一切。尽可能多,所有主题都带有Jupyter笔记本的形式的动手代码示例,以便快速入门。除了标准的受监督学习的数据中,我们将看看物理丢失约束,更紧密耦合的学习算法,具有可微分的模拟,以及加强学习和不确定性建模。我们生活在令人兴奋的时期:这些方法具有从根本上改变计算机模拟可以实现的巨大潜力。
translated by 谷歌翻译
Recent years have witnessed a growth in mathematics for deep learning--which seeks a deeper understanding of the concepts of deep learning with mathematics, and explores how to make it more robust--and deep learning for mathematics, where deep learning algorithms are used to solve problems in mathematics. The latter has popularised the field of scientific machine learning where deep learning is applied to problems in scientific computing. Specifically, more and more neural network architectures have been developed to solve specific classes of partial differential equations (PDEs). Such methods exploit properties that are inherent to PDEs and thus solve the PDEs better than classical feed-forward neural networks, recurrent neural networks, and convolutional neural networks. This has had a great impact in the area of mathematical modeling where parametric PDEs are widely used to model most natural and physical processes arising in science and engineering, In this work, we review such methods and extend them for parametric studies as well as for solving the related inverse problems. We equally proceed to show their relevance in some industrial applications.
translated by 谷歌翻译
我们提出了一种基于机器学习的方法来解决运输过程的研究,在连续力学中无处不在,特别关注那些由复杂的微物理学统治的那些现象,对理论调查不切实际,但表现出由闭合的数学表达可以描述的紧急行为。我们的机器学习模型,使用简单组件建造以及若干知名实践,能够学习运输过程的潜在表示,从标称误差表征数据的标称误差导致声音泛化属性,可以比预期更接近地面真理。通过对融合和宇宙等离子体相关的热通量抑制的长期问题的理想研究来证明这一点。 Our analysis shows that the result applies beyond those case specific assumptions and that, in particular, the accuracy of the learned representation is controllable through knowledge of the data quality (error properties) and a suitable choice of the dataset size.虽然学习的表示可以用作数值建模目的的插件,但是也可以利用上述误差分析来获得描述传输机制和理论值的可靠的数学表达式。
translated by 谷歌翻译
即将到来的技术,例如涉及安全至关重要应用的数字双胞胎,自主和人工智能系统,需要准确,可解释,计算上有效且可推广的模型。不幸的是,两种最常用的建模方法,基于物理学的建模(PBM)和数据驱动的建模(DDM)无法满足所有这些要求。在当前的工作中,我们演示了将最佳PBM和DDM结合的混合方法如何导致模型可以胜过两者的模型。我们这样做是通过基于第一原则与黑匣子DDM相结合的偏微分方程,在这种情况下,深度神经网络模型补偿了未知物理。首先,我们提出了一个数学论点,说明为什么这种方法应该起作用,然后将混合方法应用于未知的源项模拟二维热扩散问题。结果证明了该方法在准确性和概括性方面的出色性能。此外,它显示了如何在混合框架中解释DDM部分以使整体方法可靠。
translated by 谷歌翻译
我们介绍了一种用于学习时空平流扩散过程的组成物理学意识的神经网络(FINN)。 FINN实现了一种新的方式,通过以组成方式模拟部分微分方程(PDE)的成分来实现与数值模拟的物理和结构知识结合人工神经网络的学习能力。导致单维和二维PDE(汉堡,扩散,扩散反应,Allen-Cahn)展示了FinN的卓越的建模精度和超出初始和边界条件的优异分配概率。只有十分之一的参数数量平均,Finn在所有情况下占纯机学习和其他最先进的物理知识模型 - 通常甚至通过多个数量级。此外,在扩散吸附场景中近似稀疏的实际数据时,Finn优于校准的物理模型,通过揭示观察过程的未知延迟因子来确认其泛化能力并显示出说明潜力。
translated by 谷歌翻译
罕见事件计算研究中的一个中心对象是委员会函数。尽管计算成本高昂,但委员会功能编码涉及罕见事件的过程的完整机械信息,包括反应率和过渡状态合奏。在过渡路径理论(TPT)的框架下,最近的工作[1]提出了一种算法,其中反馈回路融合了一个神经网络,该神经网络将委员会功能建模为重要性采样,主要是伞形采样,该摘要收集了自适应训练所需的数据。在这项工作中,我们显示需要进行其他修改以提高算法的准确性。第一个修改增加了监督学习的要素,这使神经网络通过拟合从短分子动力学轨迹获得的委员会值的样本均值估计来改善其预测。第二个修改用有限的温度字符串(FTS)方法代替了基于委员会的伞采样,该方法可以在过渡途径的区域中进行均匀抽样。我们测试了具有非凸电势能的低维系统的修改,可以通过分析或有限元方法找到参考解决方案,并显示如何将监督学习和FTS方法组合在一起,从而准确地计算了委员会功能和反应速率。我们还为使用FTS方法的算法提供了错误分析,使用少数样品在训练过程中可以准确估算反应速率。然后将这些方法应用于未知参考溶液的分子系统,其中仍然可以获得委员会功能和反应速率的准确计算。
translated by 谷歌翻译
基于机器的最先进的模型是建筑物建模和预测能量行为的流行选择,因为给出了足够的数据,即使在复杂性禁止分析描述的情况下,它们也擅长查找时空模式和结构。但是,基于机器学习的模型用于构建能源预测的模型难以推广到数据中未表示的样本外场景,因为它们的体系结构通常不符合与能源传递现象相关的机械结构的物理对应。因此,他们对看不见的初始条件和边界条件的预测能力完全取决于数据中的代表性,这在构建测量数据中不能保证。因此,这些限制阻碍了它们对现实世界工程应用的应用,例如数字双胞胎的能源管理。作为回应,我们提出了一个域名适应框架,旨在利用对建筑物中能量行为的现象的众所周知的理解,以预测除建筑物测量数据之外的样本场景。更具体地说,我们使用低级别的线性时间不变状态空间模型表示能量行为的机理知识,然后利用其管理结构来预测目标能源系统,仅可用建筑物测量数据。我们通过使在物理衍生的子空间保持一致,该物理衍生的子空间控制全球状态空间行为更接近于测量数据的目标子空间。在最初的探索中,我们专注于线性能源系统。我们通过改变源和目标系统的热物理特性,以证明机械模型从物理学到测量数据的可传递性来测试基于子空间的DA框架。
translated by 谷歌翻译
通过机器学习在所有设计和工程领域的机器学习增益创建的数据驱动模型。他们有很高的潜力,以协助决策者创造具有更好的性能和可持续性的新人工制品。然而,有限的泛化和这些模型的黑匣子性质诱导有限的解释性和可重用性。这些缺点在工程设计中提供了延迟采用的显着障碍。为了克服这种情况,我们提出了一种基于组件的方法来通过机器学习(ml)来创建部分组件模型。该基于组件的方法对齐深入学习到系统工程(SE)。借助于节能建筑设计的示例,我们首先通过准确地预测与训练数据不同的随机结构的设计性能来证明基于组件的方法的概括。其次,我们通过从工程设计的角度来看,从低深度决策树派生的本地采样,敏感性信息和规则来说明解释性,灵敏度信息和规则。解释性的关键是,组件之间的接口处的激活是可解释的工程量。以这种方式,分层组件系统形成深度神经网络(DNN),该网络(DNN)直接集成了工程解释性的信息。组合组件中的大量可能配置允许使用可理解的数据驱动模型进行新颖的未经设计案例。通过类似的概率分布的参数范围的匹配会产生可重复使用的,普遍性和可信赖的模型。该方法适应了系统工程和域知识的工程方法模型结构。
translated by 谷歌翻译
由于其高能量强度,建筑物在当前全球能源转型中发挥着重要作用。建筑模型是普遍无处不在的,因为在建筑物的每个阶段都需要它们,即设计,改装和控制操作。基于物理方程式的古典白盒式模型必然遵循物理规律,但其底层结构的具体设计可能会阻碍他们的表现力,从而阻碍他们的准确性。另一方面,黑匣子型号更适合捕获非线性建筑动态,因此通常可以实现更好的准确性,但它们需要大量的数据,并且可能不会遵循物理规律,这是神经网络特别常见的问题(NN)模型。为了抵消这种已知的概括问题,最近介绍了物理知识的NNS,研究人员在NNS的结构中介绍了以底层底层物理法律接地,并避免经典的NN概括问题。在这项工作中,我们介绍了一种新的物理信息的NN架构,被称为身体一致的NN(PCNN),其仅需要过去的运行数据并且没有工程开销,包括在并联运行到经典NN的线性模块中的先前知识。我们正式证明,这些网络是物理上一致的 - 通过设计甚至在看不见的数据 - 关于不同的控制输入和邻近区域的温度。我们在案例研究中展示了他们的表现,其中PCNN比3美元的古典物理型电阻电容模型更好地获得高达50美元的准确性。此外,尽管结构受到约束的结构,但PCNNS在验证数据上对古典NNS对古典NNS进行了类似的性能,使训练数据较少,并保留高表达性以解决泛化问题。
translated by 谷歌翻译
标准的神经网络可以近似一般的非线性操作员,要么通过数学运算符的组合(例如,在对流 - 扩散反应部分微分方程中)的组合,要么仅仅是黑匣子,例如黑匣子,例如一个系统系统。第一个神经操作员是基于严格的近似理论于2019年提出的深层操作员网络(DeepOnet)。从那时起,已经发布了其他一些较少的一般操作员,例如,基于图神经网络或傅立叶变换。对于黑匣子系统,对神经操作员的培训仅是数据驱动的,但是如果知道管理方程式可以在培训期间将其纳入损失功能,以开发物理知识的神经操作员。神经操作员可以用作设计问题,不确定性量化,自主系统以及几乎任何需要实时推断的应用程序中的代替代物。此外,通过将它们与相对轻的训练耦合,可以将独立的预训练deponets用作复杂多物理系统的组成部分。在这里,我们介绍了Deponet,傅立叶神经操作员和图神经操作员的评论,以及适当的扩展功能扩展,并突出显示它们在计算机械师中的各种应用中的实用性,包括多孔媒体,流体力学和固体机制, 。
translated by 谷歌翻译