强化学习最近已成为解决棋盘游戏领域中复杂问题的非常强大的工具,其中通常需要代理来根据其自身的经验和收到的奖励来学习复杂的策略和移动。尽管RL胜过用于玩简单视频游戏和受欢迎的棋盘游戏的现有最新方法,但它尚未证明其在古代游戏中的能力。在这里,我们解决了一个这样的问题,在该问题中,我们使用不同的方法来训练代理商,即蒙特卡洛,Qlearning和Hir Hir Hight Sarsa能够学习最佳政策来发挥战略性的UR皇家游戏。我们游戏的状态空间很复杂,但是我们的代理商在玩游戏和学习重要的战略动作方面表现出令人鼓舞的结果。尽管很难得出结论,当接受有限的资源培训时,算法总体上的表现更好,但预计SARSA在学习最快的学习方面表现出了令人鼓舞的结果。
translated by 谷歌翻译
除了独奏游戏外,棋盘游戏至少需要其他玩家才能玩。因此,当对手失踪时,我们创建了人工智能(AI)代理商来对抗我们。这些AI代理是通过多种方式创建的,但是这些代理的一个挑战是,与我们相比,代理可以具有较高的能力。在这项工作中,我们描述了如何创建玩棋盘游戏的较弱的AI代理。我们使用Tic-Tac-toe,九名成员的莫里斯和曼卡拉,我们的技术使用了增强学习模型,代理商使用Q学习算法来学习这些游戏。我们展示了这些代理商如何学会完美地玩棋盘游戏,然后我们描述了制作这些代理商较弱版本的方法。最后,我们提供了比较AI代理的方法。
translated by 谷歌翻译
本文涵盖了基于N组的加强学习(RL)算法。我们为TD-,Sarsa-and Q-Learning提供了新的算法,这些算法在各种游戏中无缝工作,任意数量的玩家。这是通过采用以球员为中心的视图来实现的,其中每个玩家将他/她的奖励传播到以前的轮次。我们将称为最终适应RL(Farl)的新元素添加到所有这些算法。我们的主要贡献是,Farl是一项最重要的成分,可以在各种游戏中以可爱的球员为中心的观点实现成功。我们向七个棋盘游戏报告结果1,2和3名球员,包括奥赛罗,Connectfour和Hex。在大多数情况下,发现Farl非常重要,无法学习近乎完美的竞争策略。所有算法都在GitHub上的GBG框架中提供。
translated by 谷歌翻译
In recent years, Monte Carlo tree search (MCTS) has achieved widespread adoption within the game community. Its use in conjunction with deep reinforcement learning has produced success stories in many applications. While these approaches have been implemented in various games, from simple board games to more complicated video games such as StarCraft, the use of deep neural networks requires a substantial training period. In this work, we explore on-line adaptivity in MCTS without requiring pre-training. We present MCTS-TD, an adaptive MCTS algorithm improved with temporal difference learning. We demonstrate our new approach on the game miniXCOM, a simplified version of XCOM, a popular commercial franchise consisting of several turn-based tactical games, and show how adaptivity in MCTS-TD allows for improved performances against opponents.
translated by 谷歌翻译
传统的增强学习(RL)环境通常在培训和测试阶段都相同。因此,当前的RL方法在很大程度上不能推广到概念上相似但与已训练的方法不同的测试环境,我们将其称为新型测试环境。为了将RL研究推向可以推广到新的测试环境的算法,我们介绍了砖Tic-TAC-TOE(BTTT)测试床,其中在测试环境中的砖位与训练环境中的砖位不同。使用BTTT环境上的圆形锦标赛,我们表明传统的RL国家搜索方法,例如Monte Carlo Tree Search(MCTS)和Minimax,比Alphazero更广泛地对新型测试环境更具概括性。令人惊讶的是,Alphazero已被证明可以在GO,Chess和Shogi等环境中实现超人的性能,这可能会导致人们认为它在新颖的测试环境中的性能很好。我们的结果表明,BTTT虽然很简单,但足够丰富,可以探索Alphazero的普遍性。我们发现,仅增加MCT的lookahead迭代是不足以使Alphazero推广到一些新型的测试环境。相反,增加各种培训环境有助于逐步改善所有可能的起始砖配置中的普遍性。
translated by 谷歌翻译
最近,开创性算法Alphago和Alphazero在游戏学习和深入的强化学习方面开始了一个新时代。尽管Alphago和Alphazero的成就 - 在超级人类层面上玩的GO和其他复杂游戏 - 确实令人印象深刻,但这些架构的缺点是它们需要高度的计算资源。许多研究人员正在寻找类似于alphazero但计算需求较低的方法,因此更容易重现。在本文中,我们选择了Alphazero的重要元素 - 蒙特卡洛树搜索(MCTS)计划阶段 - 并将其与时间差异(TD)学习剂相结合。我们首次将MCT包裹在TD N培训网络上,我们仅在测试时间使用此包装来创建多功能代理,从而使计算需求保持较低。我们将这种新体系结构应用于多个复杂游戏(Othello,Connectfour,Rubik的Cube),并显示了这种受alphazero启发的MCTS包装器所获得的优势。特别是,我们提出的结果是,该代理是第一个在标准硬件(无GPU或TPU)上训练的代理商,击败非常强大的Othello计划EDAX到包括7级(大多数其他学习中的学习中,从而只能失败EDAX至2级)。
translated by 谷歌翻译
We present the first deep learning model to successfully learn control policies directly from high-dimensional sensory input using reinforcement learning. The model is a convolutional neural network, trained with a variant of Q-learning, whose input is raw pixels and whose output is a value function estimating future rewards. We apply our method to seven Atari 2600 games from the Arcade Learning Environment, with no adjustment of the architecture or learning algorithm. We find that it outperforms all previous approaches on six of the games and surpasses a human expert on three of them.
translated by 谷歌翻译
使用规划算法和神经网络模型的基于模型的强化学习范例最近在不同的应用中实现了前所未有的结果,导致现在被称为深度增强学习的内容。这些代理非常复杂,涉及多个组件,可能会为研究产生挑战的因素。在这项工作中,我们提出了一个适用于这些类型代理的新模块化软件架构,以及一组建筑块,可以轻松重复使用和组装,以构建基于模型的增强学习代理。这些构建块包括规划算法,策略和丢失功能。我们通过将多个这些构建块组合实现和测试经过针对三种不同的测试环境的代理来说明这种架构的使用:Cartpole,Minigrid和Tictactoe。在我们的实施中提供的一个特定的规划算法,并且以前没有用于加强学习,我们称之为Imperage Minimax,在三个测试环境中取得了良好的效果。用这种架构进行的实验表明,规划算法,政策和损失函数的最佳组合依赖性严重问题。该结果提供了证据表明,拟议的架构是模块化和可重复使用的,对想要研究新环境和技术的强化学习研究人员有用。
translated by 谷歌翻译
蒙特卡洛树搜索(MCT)是设计游戏机器人或解决顺序决策问题的强大方法。该方法依赖于平衡探索和开发的智能树搜索。MCT以模拟的形式进行随机抽样,并存储动作的统计数据,以在每个随后的迭代中做出更有教育的选择。然而,该方法已成为组合游戏的最新技术,但是,在更复杂的游戏(例如那些具有较高的分支因素或实时系列的游戏)以及各种实用领域(例如,运输,日程安排或安全性)有效的MCT应用程序通常需要其与问题有关的修改或与其他技术集成。这种特定领域的修改和混合方法是本调查的主要重点。最后一项主要的MCT调查已于2012年发布。自发布以来出现的贡献特别感兴趣。
translated by 谷歌翻译
我们介绍了DeepNash,这是一种能够学习从头开始播放不完美的信息游戏策略的自主代理,直到人类的专家级别。 Stratego是人工智能(AI)尚未掌握的少数标志性棋盘游戏之一。这个受欢迎的游戏具有$ 10^{535} $节点的巨大游戏树,即,$ 10^{175} $倍的$倍于GO。它具有在不完美的信息下需要决策的其他复杂性,类似于德克萨斯州Hold'em扑克,该扑克的游戏树较小(以$ 10^{164} $节点为单位)。 Stratego中的决策是在许多离散的动作上做出的,而动作与结果之间没有明显的联系。情节很长,在球员获胜之前经常有数百次动作,而Stratego中的情况则不能像扑克中那样轻松地分解成管理大小的子问题。由于这些原因,Stratego几十年来一直是AI领域的巨大挑战,现有的AI方法几乎没有达到业余比赛水平。 Deepnash使用游戏理论,无模型的深钢筋学习方法,而无需搜索,该方法学会通过自我播放来掌握Stratego。 DeepNash的关键组成部分的正则化NASH Dynamics(R-NAD)算法通过直接修改基础多项式学习动力学来收敛到近似NASH平衡,而不是围绕它“循环”。 Deepnash在Stratego中击败了现有的最先进的AI方法,并在Gravon Games平台上获得了年度(2022年)和历史前3名,并与人类专家竞争。
translated by 谷歌翻译
Monte Carlo Tree Search (MCTS) is a recently proposed search method that combines the precision of tree search with the generality of random sampling. It has received considerable interest due to its spectacular success in the difficult problem of computer Go, but has also proved beneficial in a range of other domains. This paper is a survey of the literature to date, intended to provide a snapshot of the state of the art after the first five years of MCTS research. We outline the core algorithm's derivation, impart some structure on the many variations and enhancements that have been proposed, and summarise the results from the key game and non-game domains to which MCTS methods have been applied. A number of open research questions indicate that the field is ripe for future work.
translated by 谷歌翻译
在加强学习的背景下,我们介绍了一个国家的关键性的概念,这表明在该特定状态下采取行动的选择程度影响预期的回报。也就是说,采取行动的选择更容易影响最终结果的状态被认为比它不太可能影响最终结果的国家更为重要。我们制定了基于临界的不同步骤编号算法(CVS) - 一种灵活的步骤编号算法,其利用人类提供的临界功能,或直接从环境中学到。我们在包括Atari Pong环境,道路树环境和射击环境的三个不同领域中测试它。我们展示了CVS能够优于流行的学习算法,如深Q-Learning和Monte Carlo。
translated by 谷歌翻译
强化学习在游戏的应用中表现出了出色的表现,尤其是在Atari游戏和GO中。基于这些成功的示例,我们试图将著名的增强学习算法(深Q网络)应用于AI足球游戏。 AI足球是5:5机器人足球比赛,每个参与者都会开发一种算法,该算法控制一个团队中的五个机器人以击败对手参与者。 Deep Q-Network旨在实现我们的原始奖励,状态空间和训练每个代理的行动空间,以便在游戏过程中可以在不同情况下采取适当的操作。我们的算法能够成功地训练代理商,并且通过对10支希望参加AI足球国际比赛的10支球队的小型竞争,其表现得到了初步证明。比赛是由AI世界杯委员会组织的,并与WCG 2019 Xi'an AI大师组织。有了我们的算法,我们在这场国际比赛中与来自39个国家的130支球队的国际比赛中获得了16轮的成就。
translated by 谷歌翻译
我们调查攻击者的效果如何,当它只从受害者的行为中学习时,没有受害者的奖励。在这项工作中,当受害者的动机未知时,我们被攻击者想要行事的情景。我们认为一个启发式方法可以使用攻击者是最大化受害者政策的熵。政策通常不会被滥用,这意味着它可以通过被动地观察受害者来提取。我们以奖励无源勘探算法的形式提供这样的策略,可以在勘探阶段最大化攻击者的熵,然后在规划阶段最大化受害者的经验熵。在我们的实验中,受害者代理商通过政策熵最大化而颠覆,暗示攻击者可能无法访问受害者的奖励成功。因此,仅基于观察行为的无奖励攻击表明,即使受害者的奖励信息受到保护,攻击者的可行性也在不了解受害者的动机。
translated by 谷歌翻译
一种简单自然的增强学习算法(RL)是蒙特卡洛探索开始(MCES),通过平均蒙特卡洛回报来估算Q功能,并通过选择最大化Q当前估计的行动来改进策略。 -功能。探索是通过“探索开始”来执行的,即每个情节以随机选择的状态和动作开始,然后遵循当前的策略到终端状态。在Sutton&Barto(2018)的RL经典书中,据说建立MCES算法的收敛是RL中最重要的剩余理论问题之一。但是,MCE的收敛问题证明是非常细微的。 Bertsekas&Tsitsiklis(1996)提供了一个反例,表明MCES算法不一定会收敛。 TSITSIKLIS(2002)进一步表明,如果修改了原始MCES算法,以使Q-功能估计值以所有状态行动对以相同的速率更新,并且折现因子严格少于一个,则MCES算法收敛。在本文中,我们通过Sutton&Barto(1998)中给出的原始,更有效的MCES算法取得进展政策。这样的MDP包括大量的环境,例如所有确定性环境和所有具有时间步长的情节环境或作为状态的任何单调变化的值。与以前使用随机近似的证据不同,我们引入了一种新型的感应方法,该方法非常简单,仅利用大量的强规律。
translated by 谷歌翻译
独立的强化学习算法没有理论保证,用于在多代理设置中找到最佳策略。然而,在实践中,先前的作品报告了在某些域中的独立算法和其他方面的良好性能。此外,文献中缺乏对独立算法的优势和弱点的全面研究。在本文中,我们对四个Pettingzoo环境进行了独立算法的性能的实证比较,这些环境跨越了三种主要类别的多助理环境,即合作,竞争和混合。我们表明,在完全可观察的环境中,独立的算法可以在协作和竞争环境中与多代理算法进行同步。对于混合环境,我们表明通过独立算法培训的代理商学会单独执行,但未能学会与盟友合作并与敌人竞争。我们还表明,添加重复性提高了合作部分可观察环境中独立算法的学习。
translated by 谷歌翻译
In fighting games, individual players of the same skill level often exhibit distinct strategies from one another through their gameplay. Despite this, the majority of AI agents for fighting games have only a single strategy for each "level" of difficulty. To make AI opponents more human-like, we'd ideally like to see multiple different strategies at each level of difficulty, a concept we refer to as "multidimensional" difficulty. In this paper, we introduce a diversity-based deep reinforcement learning approach for generating a set of agents of similar difficulty that utilize diverse strategies. We find this approach outperforms a baseline trained with specialized, human-authored reward functions in both diversity and performance.
translated by 谷歌翻译
Constructing agents with planning capabilities has long been one of the main challenges in the pursuit of artificial intelligence. Tree-based planning methods have enjoyed huge success in challenging domains, such as chess and Go, where a perfect simulator is available. However, in real-world problems the dynamics governing the environment are often complex and unknown. In this work we present the MuZero algorithm which, by combining a tree-based search with a learned model, achieves superhuman performance in a range of challenging and visually complex domains, without any knowledge of their underlying dynamics. MuZero learns a model that, when applied iteratively, predicts the quantities most directly relevant to planning: the reward, the action-selection policy, and the value function. When evaluated on 57 different Atari games -the canonical video game environment for testing AI techniques, in which model-based planning approaches have historically struggled -our new algorithm achieved a new state of the art. When evaluated on Go, chess and shogi, without any knowledge of the game rules, MuZero matched the superhuman performance of the AlphaZero algorithm that was supplied with the game rules.
translated by 谷歌翻译
随着机器学习(ML)更加紧密地编织到社会中,如果我们要负责任地使用它,我们必须更好地表征ML的优势和局限性。现有的ML基准环境(例如董事会和视频游戏)为进度提供了明确定义的基准测试,但是组成的任务通常很复杂,而且通常不清楚任务特征如何对机器学习者的整体难度有所贡献。同样,如果没有系统地评估任务特征如何影响难度,则在不同基准环境中的性能之间建立有意义的联系是一项挑战。我们介绍了一个新颖的基准环境,该环境提供了大量的ML挑战,并可以精确地检查任务要素如何影响实际难度。工具框架学习任务是“董事会清除游戏”,我们称之为“隐藏规则”游戏(GOHR)。环境包括一种表达性的规则语言和可以在本地安装的圈养服务器环境。我们建议一组基准的规则学习任务,并计划为有兴趣尝试学习规则的研究人员提供绩效领导者板。 GOHR通过允许对任务进行罚款,受控的修改来补充现有环境,使实验者能够更好地了解给定学习任务的每个方面如何有助于其对任意ML算法的实际困难。
translated by 谷歌翻译
Deep reinforcement learning is poised to revolutionise the field of AI and represents a step towards building autonomous systems with a higher level understanding of the visual world. Currently, deep learning is enabling reinforcement learning to scale to problems that were previously intractable, such as learning to play video games directly from pixels. Deep reinforcement learning algorithms are also applied to robotics, allowing control policies for robots to be learned directly from camera inputs in the real world. In this survey, we begin with an introduction to the general field of reinforcement learning, then progress to the main streams of value-based and policybased methods. Our survey will cover central algorithms in deep reinforcement learning, including the deep Q-network, trust region policy optimisation, and asynchronous advantage actor-critic. In parallel, we highlight the unique advantages of deep neural networks, focusing on visual understanding via reinforcement learning. To conclude, we describe several current areas of research within the field.
translated by 谷歌翻译