本文介绍了用于在线学习系统的新机器学习模型的设计和实施。我们旨在通过启用一个自动数学单词问题求解器来改善系统的智能水平,该单词可以支持广泛的功能,例如家庭作业校正,困难估计和优先建议。我们最初计划采用现有模型,但意识到他们将数学单词问题处理为序列或均匀图形图表。多种类型的令牌(例如实体,单位,费率和数字)之间的关系被忽略了。我们决定设计和实施一种新型模型,以使用此类关系数据来弥合人类可读语言和机器可读性的逻辑形式之间的信息差距。我们提出了一个异质线图变压器(HLGT)模型,该模型通过在数学单词问题上通过语义角色标记构建异质线图,然后执行节点表示学习,从而了解Edge类型。我们将数值比较作为一项辅助任务,以改善用于现实世界使用的模型培训。实验结果表明,所提出的模型比现有模型的性能更好,并表明它仍然远低于人类绩效。不断需要信息利用和知识发现来改善在线学习系统。
translated by 谷歌翻译
Recent years have witnessed the emerging success of graph neural networks (GNNs) for modeling structured data. However, most GNNs are designed for homogeneous graphs, in which all nodes and edges belong to the same types, making them infeasible to represent heterogeneous structures. In this paper, we present the Heterogeneous Graph Transformer (HGT) architecture for modeling Web-scale heterogeneous graphs. To model heterogeneity, we design node-and edge-type dependent parameters to characterize the heterogeneous attention over each edge, empowering HGT to maintain dedicated representations for different types of nodes and edges. To handle dynamic heterogeneous graphs, we introduce the relative temporal encoding technique into HGT, which is able to capture the dynamic structural dependency with arbitrary durations. To handle Web-scale graph data, we design the heterogeneous mini-batch graph sampling algorithm-HGSampling-for efficient and scalable training. Extensive experiments on the Open Academic Graph of 179 million nodes and 2 billion edges show that the proposed HGT model consistently outperforms all the state-of-the-art GNN baselines by 9%-21% on various downstream tasks. The dataset and source code of HGT are publicly available at https://github.com/acbull/pyHGT.
translated by 谷歌翻译
考虑到RDF三元组的集合,RDF到文本生成任务旨在生成文本描述。最先前的方法使用序列到序列模型或使用基于图形的模型来求解此任务以编码RDF三维并生成文本序列。然而,这些方法未能明确模拟RDF三元组之间的本地和全球结构信息。此外,以前的方法也面临了生成文本的低信任问题的不可忽略的问题,这严重影响了这些模型的整体性能。为了解决这些问题,我们提出了一种组合两个新的图形增强结构神经编码器的模型,共同学习输入的RDF三元组中的本地和全局结构信息。为了进一步改进文本忠诚,我们创新地根据信息提取(即)引进了强化学习(RL)奖励。我们首先使用佩带的IE模型从所生成的文本中提取三元组,并将提取的三级的正确数量视为额外的RL奖励。两个基准数据集上的实验结果表明,我们所提出的模型优于最先进的基线,额外的加强学习奖励确实有助于改善所生成的文本的忠诚度。
translated by 谷歌翻译
对新数据库的普遍性对于旨在将人类话语解析为SQL语句的文本到SQL系统至关重要。现有作品通过利用确切的匹配方法来确定问题单词和模式项目之间的词汇匹配来实现这一目标。但是,这些方法在其他具有挑战性的场景中失败,例如,表面形式在相应的问题单词和架构项目之间有所不同的同义词替代。在本文中,我们提出了一个名为ISESL-SQL的框架,以迭代地构建问题令牌和数据库模式之间的语义增强的架构链接图。首先,我们以无监督的方式通过探测过程提取PLM的模式链接图。然后,通过深图学习方法在训练过程中进一步优化了模式链接图。同时,我们还设计了一个称为图形正则化的辅助任务,以改善模式链接图中提到的模式信息。对三个基准测试的广泛实验表明,ISESL-SQL可以始终优于基准,进一步的研究表明其普遍性和鲁棒性。
translated by 谷歌翻译
知识图表问题基于信息检索旨在通过从大型知识图表中检索答案来回答问题来回答(即,kgqa)。大多数现有方法首先粗略地检索可能包含候选答案的知识子图(KSG),然后搜索子图中的确切答案。然而,粗略检索的KSG可以包含数千个候选节点,因为查询中涉及的知识图通常是大规模的。为了解决这个问题,我们首先建议通过新的子图分区算法将检索到的ksg分区为几个较小的子ksgs,然后呈现一个图形增强学习,以便测量模型以从中选择排名的子ksgs。我们所提出的模型结合了新的子图匹配网络,以捕获问题和子图中的全局交互以及增强的双边多视角匹配模型,以捕获局部交互。最后,我们分别在全KSG和排名级分ksg上应用答案选择模型,以验证我们提出的图形增强学习的效果。多个基准数据集的实验结果表明了我们方法的有效性。
translated by 谷歌翻译
文本到SQL解析是一项必不可少且具有挑战性的任务。文本到SQL解析的目的是根据关系数据库提供的证据将自然语言(NL)问题转换为其相应的结构性查询语言(SQL)。来自数据库社区的早期文本到SQL解析系统取得了显着的进展,重度人类工程和用户与系统的互动的成本。近年来,深层神经网络通过神经生成模型显着提出了这项任务,该模型会自动学习从输入NL问题到输出SQL查询的映射功能。随后,大型的预训练的语言模型将文本到SQL解析任务的最新作品带到了一个新级别。在这项调查中,我们对文本到SQL解析的深度学习方法进行了全面的评论。首先,我们介绍了文本到SQL解析语料库,可以归类为单转和多转。其次,我们提供了预先训练的语言模型和现有文本解析方法的系统概述。第三,我们向读者展示了文本到SQL解析所面临的挑战,并探索了该领域的一些潜在未来方向。
translated by 谷歌翻译
随着未来以数据为中心的决策,对数据库的无缝访问至关重要。关于创建有效的文本到SQL(Text2SQL)模型以访问数据库的数据有广泛的研究。使用自然语言是可以通过有效访问数据库(尤其是对于非技术用户)来弥合数据和结果之间差距的最佳接口之一。它将打开门,并在精通技术技能或不太熟练的查询语言的用户中引起极大的兴趣。即使提出或研究了许多基于深度学习的算法,在现实工作场景中使用自然语言来解决数据查询问题仍然非常具有挑战性。原因是在不同的研究中使用不同的数据集,这带来了其局限性和假设。同时,我们确实缺乏对这些提议的模型及其对其训练的特定数据集的局限性的彻底理解。在本文中,我们试图介绍过去几年研究的24种神经网络模型的整体概述,包括其涉及卷积神经网络,经常性神经网络,指针网络,强化学习,生成模型等的架构。我们还概述11个数据集,这些数据集被广泛用于训练Text2SQL技术的模型。我们还讨论了无缝数据查询中文本2SQL技术的未来应用可能性。
translated by 谷歌翻译
代码搜索目标是根据自然语言查询检索相关的代码片段,以提高软件生产力和质量。但是,由于源代码和查询之间的语义间隙,自动代码搜索是具有挑战性的。大多数现有方法主要考虑嵌入的顺序信息,其中文本背后的结构信息不完全考虑。在本文中,我们设计了一个名为GraphsearchNet的新型神经网络框架,通过共同学习源代码和查询的富集语义来启用有效和准确的源代码搜索。具体地,我们建议将源代码和查询编码为两个图,其中双向GGNN以捕获图表的本地结构信息。此外,我们通过利用有效的多主题来增强BigGNN,以补充BigGNN错过的全球依赖。关于Java和Python数据集的广泛实验说明了GraphSearchNet优于当前最先进的工作原位。
translated by 谷歌翻译
在本文中,我们试图通过引入深度学习模型的句法归纳偏见来建立两所学校之间的联系。我们提出了两个归纳偏见的家族,一个家庭用于选区结构,另一个用于依赖性结构。选区归纳偏见鼓励深度学习模型使用不同的单位(或神经元)分别处理长期和短期信息。这种分离为深度学习模型提供了一种方法,可以从顺序输入中构建潜在的层次表示形式,即更高级别的表示由高级表示形式组成,并且可以分解为一系列低级表示。例如,在不了解地面实际结构的情况下,我们提出的模型学会通过根据其句法结构组成变量和运算符的表示来处理逻辑表达。另一方面,依赖归纳偏置鼓励模型在输入序列中找到实体之间的潜在关系。对于自然语言,潜在关系通常被建模为一个定向依赖图,其中一个单词恰好具有一个父节点和零或几个孩子的节点。将此约束应用于类似变压器的模型之后,我们发现该模型能够诱导接近人类专家注释的有向图,并且在不同任务上也优于标准变压器模型。我们认为,这些实验结果为深度学习模型的未来发展展示了一个有趣的选择。
translated by 谷歌翻译
Knowledge graphs (KG) have served as the key component of various natural language processing applications. Commonsense knowledge graphs (CKG) are a special type of KG, where entities and relations are composed of free-form text. However, previous works in KG completion and CKG completion suffer from long-tail relations and newly-added relations which do not have many know triples for training. In light of this, few-shot KG completion (FKGC), which requires the strengths of graph representation learning and few-shot learning, has been proposed to challenge the problem of limited annotated data. In this paper, we comprehensively survey previous attempts on such tasks in the form of a series of methods and applications. Specifically, we first introduce FKGC challenges, commonly used KGs, and CKGs. Then we systematically categorize and summarize existing works in terms of the type of KGs and the methods. Finally, we present applications of FKGC models on prediction tasks in different areas and share our thoughts on future research directions of FKGC.
translated by 谷歌翻译
Machine reading comprehension (MRC) is a long-standing topic in natural language processing (NLP). The MRC task aims to answer a question based on the given context. Recently studies focus on multi-hop MRC which is a more challenging extension of MRC, which to answer a question some disjoint pieces of information across the context are required. Due to the complexity and importance of multi-hop MRC, a large number of studies have been focused on this topic in recent years, therefore, it is necessary and worth reviewing the related literature. This study aims to investigate recent advances in the multi-hop MRC approaches based on 31 studies from 2018 to 2022. In this regard, first, the multi-hop MRC problem definition will be introduced, then 31 models will be reviewed in detail with a strong focus on their multi-hop aspects. They also will be categorized based on their main techniques. Finally, a fine-grain comprehensive comparison of the models and techniques will be presented.
translated by 谷歌翻译
AMR到文本是NLP社区中旨在从抽象含义表示(AMR)图生成句子的关键技术之一。自2013年提出AMR以来,有关AMR到文本的研究越来越普遍,因为AMR作为自然语言的高级语义描述,由于AMR具有独特的优势,因此作为结构化数据的重要分支变得越来越普遍。在本文中,我们简要介绍了AMR到文本。首先,我们介绍了此技术的当前情况,并指出了它的困难。其次,根据先前研究中使用的方法,我们根据它们各自的机制将它们大致分为五个类别和预先训练的语言模型(PLM)。特别是,我们详细介绍了基于神经网络的方法,并介绍了AMR到文本的最新进展,该方法指的是AMR重建,解码器优化等。此外,我们介绍了AMR-TOXT的基准和评估方法。最终,我们提供了当前技术和未来研究的前景的摘要。
translated by 谷歌翻译
深度学习技术导致了通用对象检测领域的显着突破,近年来产生了很多场景理解的任务。由于其强大的语义表示和应用于场景理解,场景图一直是研究的焦点。场景图生成(SGG)是指自动将图像映射到语义结构场景图中的任务,这需要正确标记检测到的对象及其关系。虽然这是一项具有挑战性的任务,但社区已经提出了许多SGG方法并取得了良好的效果。在本文中,我们对深度学习技术带来了近期成就的全面调查。我们审查了138个代表作品,涵盖了不同的输入方式,并系统地将现有的基于图像的SGG方法从特征提取和融合的角度进行了综述。我们试图通过全面的方式对现有的视觉关系检测方法进行连接和系统化现有的视觉关系检测方法,概述和解释SGG的机制和策略。最后,我们通过深入讨论当前存在的问题和未来的研究方向来完成这项调查。本调查将帮助读者更好地了解当前的研究状况和想法。
translated by 谷歌翻译
知识基础问题回答(KBQA)旨在通过知识库(KB)回答问题。早期研究主要集中于回答有关KB的简单问题,并取得了巨大的成功。但是,他们在复杂问题上的表现远非令人满意。因此,近年来,研究人员提出了许多新颖的方法,研究了回答复杂问题的挑战。在这项调查中,我们回顾了KBQA的最新进展,重点是解决复杂问题,这些问题通常包含多个主题,表达复合关系或涉及数值操作。详细说明,我们从介绍复杂的KBQA任务和相关背景开始。然后,我们描述用于复杂KBQA任务的基准数据集,并介绍这些数据集的构建过程。接下来,我们提出两个复杂KBQA方法的主流类别,即基于语义解析的方法(基于SP)的方法和基于信息检索的方法(基于IR)。具体而言,我们通过流程设计说明了他们的程序,并讨论了它们的主要差异和相似性。之后,我们总结了这两类方法在回答复杂问题时会遇到的挑战,并解释了现有工作中使用的高级解决方案和技术。最后,我们结论并讨论了与复杂的KBQA有关的几个有希望的方向,以进行未来的研究。
translated by 谷歌翻译
许多真实世界图(网络)是具有不同类型的节点和边缘的异构。异构图嵌入,旨在学习异构图的低维节点表示,对于各种下游应用至关重要。已经提出了许多基于元路径的嵌入方法来学习近年来异构图的语义信息。然而,在学习异构图形嵌入时,大多数现有技术都在图形结构信息中忽略了图形结构信息。本文提出了一种新颖的结构意识异构图形神经网络(SHGNN),以解决上述限制。详细地,我们首先利用特征传播模块来捕获元路径中中间节点的本地结构信息。接下来,我们使用树关注聚合器将图形结构信息结合到元路径上的聚合模块中。最后,我们利用了元路径聚合器熔断来自不同元路径的聚合的信息。我们对节点分类和聚类任务进行了实验,并在基准数据集中实现了最先进的结果,该数据集显示了我们所提出的方法的有效性。
translated by 谷歌翻译
机器阅读理解引起了广泛的关注,因为它探讨了模型对文本理解的潜力。为了进一步为机器配备推理能力,提出了逻辑推理的挑战性任务。以前关于逻辑推理的著作提出了一些策略,以从不同方面提取逻辑单位。但是,对于逻辑单元之间的长距离依赖性建模仍然存在挑战。同样,要求揭示文本的逻辑结构,并将离散逻辑进一步融合到连续的文本嵌入。为了解决上述问题,我们提出了一个端到端的模型徽标,该登录徽标器利用两个分支的图形变压器网络进行文本逻辑推理。首先,我们引入了不同的提取策略,将文本分为两组逻辑单元,并分别构造逻辑图和语法图。逻辑图模拟了逻辑分支的因果关系,而语法图捕获了语法分支的共发生关系。其次,为了建模长距离依赖性,每个图的节点序列被馈入完全连接的图形变压器结构。两个相邻的矩阵被视为图形变压器层的注意偏置,它们将离散的逻辑结构映射到连续的文本嵌入空间。第三,在答案预测更新功能之前,介绍了动态的门机制和问题意识到的自我发项模块。推理过程通过采用逻辑单元来提供与人类认知一致的逻辑单位。实验结果表明了我们的模型的优势,该模型的表现优于两个逻辑推理基准上的最新单个模型。
translated by 谷歌翻译
语义关系预测旨在挖掘异质图中对象之间的隐式关系,这些关系由不同类型的对象和不同类型的链接组成。在现实世界中,新的语义关系不断出现,它们通常仅带有几个标记的数据。由于多种异构图中存在各种语义关系,因此可以从某些现有的语义关系中开采可转移的知识,以帮助预测新的语义关系,几乎没有标记的数据。这激发了一个新的问题,即跨异构图的几乎没有语义关系预测。但是,现有方法无法解决此问题,因为它们不仅需要大量的标记样本作为输入,而且还集中在具有固定异质性的单个图上。针对这个新颖而充满挑战的问题,在本文中,我们提出了一个基于元学习的图形神经网络,用于语义关系预测,名为Metags。首先,metags将对象之间的图形结构分解为多个归一化子图,然后采用两视图形神经网络来捕获这些子图的本地异质信息和全局结构信息。其次,Metags通过超出型网络汇总了这些子图的信息,该网络可以从现有的语义关系中学习并适应新的语义关系。第三,使用良好的初始化的两视图形神经网络和超出型网络,Metags可以有效地从不同的图形中学习新的语义关系,同时克服少数标记数据的限制。在三个现实世界数据集上进行的广泛实验表明,元数据的性能优于最先进的方法。
translated by 谷歌翻译
事实证明,信息提取方法可有效从结构化或非结构化数据中提取三重。以(头部实体,关系,尾部实体)形式组织这样的三元组的组织称为知识图(kgs)。当前的大多数知识图都是不完整的。为了在下游任务中使用kgs,希望预测kgs中缺少链接。最近,通过将实体和关系嵌入到低维的矢量空间中,旨在根据先前访问的三元组来预测三元组,从而对KGS表示不同的方法。根据如何独立或依赖对三元组进行处理,我们将知识图完成的任务分为传统和图形神经网络表示学习,并更详细地讨论它们。在传统的方法中,每个三重三倍将独立处理,并在基于GNN的方法中进行处理,三倍也考虑了他们的当地社区。查看全文
translated by 谷歌翻译
文本逻辑推理,尤其是具有逻辑推理的问题答案(QA)任务,需要对特定逻辑结构的认识。段落级别的逻辑关系代表了命题单位之间的必要或矛盾(例如,结论性句子)。但是,由于当前的质量检查系统专注于基于实体的关系,因此无法探索此类结构。在这项工作中,我们提出了逻辑结构构成建模,以解决逻辑推理质量质量质量质量质量质量质量质量质量质量质量质量质量质量质量质量质量质量质量质量质量质量质量质量质量请参见。网络执行两个过程:(1)利用在线话语连接以及通用逻辑理论的逻辑图构造,(2)通过图形网络学习产生结构性逻辑特征的逻辑表示。该管道应用于一般编码器,其基本功能与高级逻辑功能相结合,以进行答案预测。在三个文本逻辑推理数据集上进行的实验证明了dagns内置的逻辑结构的合理性以及学到的逻辑特征的有效性。此外,零射传输结果显示了特征的通用性,可看不见的逻辑文本。
translated by 谷歌翻译
场景图是一个场景的结构化表示,可以清楚地表达场景中对象之间的对象,属性和关系。随着计算机视觉技术继续发展,只需检测和识别图像中的对象,人们不再满足。相反,人们期待着对视觉场景更高的理解和推理。例如,给定图像,我们希望不仅检测和识别图像中的对象,还要知道对象之间的关系(视觉关系检测),并基于图像内容生成文本描述(图像标题)。或者,我们可能希望机器告诉我们图像中的小女孩正在做什么(视觉问题应答(VQA)),甚至从图像中移除狗并找到类似的图像(图像编辑和检索)等。这些任务需要更高水平的图像视觉任务的理解和推理。场景图只是场景理解的强大工具。因此,场景图引起了大量研究人员的注意力,相关的研究往往是跨模型,复杂,快速发展的。然而,目前没有对场景图的相对系统的调查。为此,本调查对现行场景图研究进行了全面调查。更具体地说,我们首先总结了场景图的一般定义,随后对场景图(SGG)和SGG的发电方法进行了全面和系统的讨论,借助于先验知识。然后,我们调查了场景图的主要应用,并汇总了最常用的数据集。最后,我们对场景图的未来发展提供了一些见解。我们相信这将是未来研究场景图的一个非常有帮助的基础。
translated by 谷歌翻译