The mixture of Expert (MoE) parallelism is a recent advancement that scales up the model size with constant computational cost. MoE selects different sets of parameters (i.e., experts) for each incoming token, resulting in a sparsely-activated model. Despite several successful applications of MoE, its training efficiency degrades significantly as the number of experts increases. The routing stage in MoE relies on the efficiency of the All2All communication collective, which suffers from network congestion and has poor scalability. To mitigate these issues, we introduce SMILE, which exploits heterogeneous network bandwidth and splits a single-step routing into bi-level routing. Our experimental results show that the proposed method obtains a 2.5x speedup over Switch Transformer in terms of pretraining throughput on the Colossal Clean Crawled Corpus without losing any convergence speed.
translated by 谷歌翻译
在深度学习中,模型通常重用所有输入的相同参数。专家的混合(MOE)违反了这一点,而是为每个传入示例选择不同的参数。结果是一个稀疏激活的模型 - 具有残酷数量的参数 - 但恒定的计算成本。然而,尽管MOE取得了一些显着的成功,但复杂性,沟通成本和培训不稳定的阻碍了广泛的采用 - 我们使用Switch Transformer解决了这些领域。我们简化了MOE路由算法和设计直观的改进模型,以降低的通信和计算成本。我们提出的培训技术有助于纠缠不稳定,我们表明稀疏模型可能首次以较低的精度(BFLOAT16)格式进行培训。我们设计了基于T5基数和T5总数的模型,以使用相同的计算资源获得高达7倍的训练速度。这些改进扩展到多语言设置,我们在所有101种语言中衡量对MT5基本版本的收益。最后,我们通过在“巨大的清洁爬行语料库”上预先培训高达数万亿个参数模型,并在T5-XXL模型上实现4倍的速度,从而提高了语言模型的当前规模。
translated by 谷歌翻译
随着巨型密集模型的训练在当今硬件资源的可用性和能力方面达到了界限,由于其质量降低了大量培训成本,因此Experts(MOE)模型成为最有前途的模型体系结构之一等效密集模型。它的培训成本节省从编码器模型(先前的工作)展示到自动攻击性语言模型的5倍(这项工作以及并行探索)。但是,由于模型的规模和独特的架构,如何提供快速MOE模型推理仍然具有挑战性和未解决,从而限制了其实际用途。为了解决这个问题,我们提出了DeepSpeed-Moe,这是DeepSpeed库的一部分,包括新型MOE架构设计和模型压缩技术,将MOE模型大小降低到3.7倍,以及一个,以及一个与现有的MOE推理解决方案相比,高度优化的推理系统可提供7.3倍的延迟和成本。 DeepSpeed-Moe提供了前所未有的量表和效率,可与质量等效的密集模型相比,提供高达4.5倍和9倍的推理的大型MOE模型。我们希望我们的创新和系统有助于在大型模型景观中打开通往新方向的有前途的途径,从密集到稀疏的MOE模型转变,在这种模型中,培训和部署具有更少资源的更高质量模型变得更加广泛。
translated by 谷歌翻译
近年来,Experts(MOE)的混合物已成为一种有前途的深度学习技术,可以将模型能力扩展为万亿多个参数,同时通过稀疏计算降低计算成本。虽然MoE开设了一个非常大的模型的新领域,但由于MOE的动态性质与系统的静态平行性/管道层之间的不匹配,因此其数以千计的GPU的实现受到限制。我们提出了Tutel,这是一种具有动态自适应并行性和管道的高度可扩展的堆栈设计和实现。 TUTEL在运行时提供自适应并行性切换和自适应管道,分别达到1.74倍和2.00倍的单MOE层加速度。我们还提出了一种用于MOE通信速度的新颖的二维层次结构算法,该算法的表现超过了2,048 GPU的先前最先前的最新时间。 Tutel汇总了所有技术,最终在16 GPU和2,048 GPU上分别提供了4.96倍和5.75倍的加速度,分别通过Fairseq:Meta的Facebook AI AI研究序列到序列工具Kit(Tutel(Tutel)(Tutel)(Tutel)(现在由Fairseq部分采用)。 Tutel源代码可在公共场所获得:https://github.com/microsoft/tutel。我们的评估表明,Tutel有效,有效地运行了一个基于现实的MOE模型,名为Swinv2-Moe,建立在Swin Transformer V2上,这是一种最先进的计算机视觉体系结构。在效率方面,Tutel加速了Swinv2-MoE,在FairSeq的训练和推理中分别达到1.55倍和2.11倍的速度。关于有效性,SWINV2-MOE模型在预训练和下游计算机视觉任务(例如可可对象检测)方面都比对应的密度密度模型都达到了卓越的精度,这表明Tutel准备对端到端现实世界模型训练的准备就绪和推理。 Swinv2-Moe在https://github.com/microsoft/swin-transformer中开放。
translated by 谷歌翻译
模型大小的范围不断增加,并且持续改进性能使大型模型时代的到来的到来。在本报告中,我们通过潜入培训目标和培训方法来探讨大型模型培训如何运作。具体而言,培训目标描述了如何利用Web规模数据来开发基于自我监督的学习以及基于分布式培训的培训方法,开发出极强的大型模型,描述了如何使大型模型培训成为现实。我们将现有的培训方法总结为三个主要类别:训练并行性,节省记忆技术和模型稀疏设计。训练并行性可以根据发生的并行性维度分类为数据,管道和张量并行性。节省记忆的技术是正交的,并且与训练并行性互补。和模型稀疏设计以恒定的计算成本进一步扩大模型大小。在https://github.com/qhliu26/bm-training提供了不断更新的大型模型培训清单。
translated by 谷歌翻译
过去的几年见证了基于变压器的模型的成功,其规模和应用方案继续积极发展。变压器模型的当前景观越来越多样化:该模型大小差异很大,最大的参数是最大的。模型特性由于特征的混合物所引入的稀疏性而有所不同。目标应用程序方案可以是关键延迟或面向吞吐量的情况;部署硬件可以是具有不同类型的内存和存储等单身或多GPU系统。随着多样性的增加和变压器模型的快速发展速度,设计高性能和高效的推理系统非常具有挑战性。在本文中,我们提出了DeepSpeed推断,这是用于解决上述挑战的变压器模型推理的全面系统解决方案。深速推理包括(1)一种多GPU推理解决方案,可最大程度地减少潜伏度,同时最大化密集和稀疏变压器模型的吞吐量,当它们适合聚集的GPU内存时,以及(2)一种异质推理解决方案,该解决方案利用CPU和NVME内存中的CPU和NVME内存。除了GPU内存和计算以使高推理吞吐量具有不适合聚集GPU内存的大型推理吞吐量。对于面向延迟的方案,深速推理可将延迟降低到最新的7倍,而对于面向吞吐量的方案,延迟的潜伏期将延迟减少到1.5倍以上。此外,它通过利用数百个GPU来实现实时延迟约束下的参数量表推断,这是一个前所未有的推理。它可以比仅使用GPU的解决方案更大的25倍模型,同时提供84个TFLOPS(超过50美元的A6000峰值)。
translated by 谷歌翻译
稀疏的专家模型是一个三十年来的概念,作为深度学习中流行的建筑。这类体系结构包括专家的混合物,交换变压器,路由网络,基础层等,所有这些都以一个统一的想法,即每个示例都由参数的一个子集进行。通过这样做,稀疏度将参数计数与每个示例的计算分解,从而允许使用极大但有效的模型。最终的模型显示了各种领域的显着改善,例如自然语言处理,计算机视觉和语音识别。我们回顾了稀疏专家模型的概念,提供了对常见算法的基本描述,将深度学习时代的进步进行上下文化,并通过突出未来工作的领域来结束。
translated by 谷歌翻译
稀疏激活的变压器(例如专家的混合物(MOE))由于其极端的缩放能力而引起了极大的兴趣,这可以使模型大小的急剧增加而没有大幅增加计算成本。为了实现这一目标,MOE模型用变压器中的Experts子层取代了前馈子层,并使用门控网络将每个令牌路由到其指定的专家。由于对此类模型进行有效培训的共同实践需要在不同的机器上分发专家和代币,因此这种路由策略通常会产生巨大的跨机器通信成本,因为代币及其分配的专家可能居住在不同的机器中。在本文中,我们提出了\ emph {门控辍学},它允许代币忽略门控网络并留在其本地机器,从而减少了交叉机器的通信。与传统辍学类似,我们还表明,门控辍学在训练过程中具有正规化效果,从而改善了概括性能。我们验证了对多语言机器翻译任务中门控辍学的有效性。我们的结果表明,门控辍学可改善具有更快的壁式时间收敛速率的最先进的MOE模型,并为各种模型尺寸和数据集提供更好的BLEU分数。
translated by 谷歌翻译
We present MegaBlocks, a system for efficient Mixture-of-Experts (MoE) training on GPUs. Our system is motivated by the limitations of current frameworks, which restrict the dynamic routing in MoE layers to satisfy the constraints of existing software and hardware. These formulations force a tradeoff between model quality and hardware efficiency, as users must choose between dropping tokens from the computation or wasting computation and memory on padding. To address these limitations, we reformulate MoE computation in terms of block-sparse operations and develop new block-sparse GPU kernels that efficiently handle the dynamism present in MoEs. Our approach never drops tokens and maps efficiently to modern hardware, enabling end-to-end training speedups of up to 40% over MoEs trained with the state-of-the-art Tutel library and 2.4x over DNNs trained with the highly-optimized Megatron-LM framework.
translated by 谷歌翻译
深度学习领域目睹了对极端计算和内存密集型神经网络的显着转变。这些较新的较大模型使研究人员能够推进各种领域的最先进的工具。这种现象刺激了在更多的硬件加速器上产生了针对神经网络的分布式训练的算法。在本文中,我们讨论并比较了当前的最先进的框架,以实现大规模的分布式深度学习。首先,我们调查分布式学习中的当前实践,并确定所使用的不同类型的并行性。然后,我们提出了对大型图像和语言培训任务的性能进行了经验结果。此外,我们解决了他们的统计效率和内存消耗行为。根据我们的结果,我们讨论了阻碍性能的每个框架的算法和实现部分。
translated by 谷歌翻译
在过去几年中,培训最先进的神经网络的记忆要求远远超过了现代硬件加速器的DRAM能力。这仍然需要开发有效的算法,并在大规模的基于GPU的集群上并行培训这些神经网络。由于在现代GPU上的计算相对便宜,因此在这些并行训练算法中设计和实现极其有效的通信对于提取最大性能至关重要。本文介绍了Axonn,一个并行深度学习框架,用于利用异步和消息驱动的执行来安排每个GPU上的神经网络操作,从而降低GPU空闲时间并最大限度地提高硬件效率。通过使用CPU存储器作为划痕空间来定期在训练期间定期卸载数据,AXONN能够将GPU存储器消耗降低四次。这使我们可以将每个GPU的参数数量增加四次,从而减少通信量并将性能提高超过13%。在48-384 NVIDIA TESLA V100 GPU的大型变压器模型上进行了12-100亿参数,Axonn实现了理论峰的49.4-54.78%的每GPU吞吐量,并将培训时间减少22-37天(15-25与最先进的加速度)。
translated by 谷歌翻译
专家(MOE)的稀疏混合物由于具有负担得起的计算开销而有希望的缩放能力,因此引起了极大的兴趣。 Moe将密集的层转换为稀疏的专家,并利用封闭式路由网络使专家有条件地激活。但是,随着专家的数量的增长,带有残酷参数的MOE会受到过度拟合和稀疏数据分配的影响。此类问题在数据有限的任务上尤为严重,因此阻碍了MOE模型通过扩展来提高性能的进度。在这项工作中,我们提出了专家群集的混合 - 一种通用方法,可以使专家层通过在路由阶段施加基于方差的约束来学习更多多样化和适当的知识。我们进一步提出了专门为专家集群结构设计的集群级专家辍学策略。我们的实验表明,MEEC可以提高机器翻译和自然语言理解任务的性能,并提高在有限数据下扩展专家的性能上限。我们还验证了MEEC在缓解过度拟合和稀疏数据分配中起积极的作用。
translated by 谷歌翻译
扩展培训工作负载的能力是深度学习的关键性能推动者之一。主要缩放方法是基于数据并行GPU的培训,该培训已经被硬件和软件支持高效地支持高效的GPU通信,特别是通过带宽过度曝光。此支持以A价格出现:相对于其“消费者级”对应物,“云级”服务器之间存在幅度成本差异,但相对于其“消费者级”对应物,虽然服务器级和消费者级GPU可以具有类似的计算信封。在本文中,我们调查了昂贵的硬件过度控制方法是否可以通过算法和系统设计所涵盖,并提出称为CGX的框架,为通信压缩提供有效的软件支持。我们认为,在没有硬件支持的情况下,该框架能够从消费者级多GPU系统中删除通信瓶颈:在没有硬件支持的情况下:在培训现代模型和全部准确性方面时,我们的框架可以在商品上进行2-3倍的自动加速系统使用8个消费者级NVIDIA RTX 3090 GPU,并使其超越NVIDIA DGX-1服务器的吞吐量,其具有类似的峰值闪光,但是从带宽过度提供的益处。
translated by 谷歌翻译
专家混合物(MOE)由于其成功提高了模型质量,特别是在变压器方面的成功而变得流行。通过向几个专家提供稀疏门的令牌,每个专家只包含完整模型的一部分,Moe将模型尺寸保持不变,并且显着降低了每次标记计算,从而有效地缩放神经网络。但是,我们发现,目前的联合训练专家和稀疏门的方法引入了对模型精度的负面影响,缩短了昂贵的大规模模型训练的效率。在这项工作中,我们提出了用于MOE训练的密集至稀疏的门(DTS-Gate)。具体而言,代替使用永久稀疏门,DTS-Gate开始作为向所有专家路由令牌的密集栅极开始,然后逐渐和自适应地成为稀疏,而路线较少到更少的专家。与DTS-Gate的Moe自然地通过培训所有专家训练专家和稀疏门的训练,然后学习稀疏门。实验表明,与GPT-MOE(1.5B)模型中的最先进的开关门相比,使用OpenWeBtext数据集(40GB),DTS-Gate可以获得2.0倍的加速以达到相同的验证困惑,如以及更高的拖鞋 - 效率为1.42倍的加速。
translated by 谷歌翻译
基础模型正在成为主要的深度学习技术。由于模型参数和训练数据集的大规模,预处理基础模型始终耗时。除了计算密集型外,培训过程还非常密集和沟通密集。这些功能使得需要应用3D并行性,该平行性整合数据并行性,管道模型并行性和张量模型并行性,以实现高训练效率。为了实现这一目标,开发了一些自定义软件框架,例如Megatron-LM和DeepSpeed。但是,当前的3D平行框架仍然符合两个问题:i)它们对模型开发人员不透明,这些开发人员需要手动修改模型以并行化培训。 ii)它们对计算,GPU存储器和网络带宽的利用不足。我们提出了Merak,这是一个自动化的3D并行性深度学习培训框架,并具有高度资源利用。 Merak会自动使用自动模型分区仪部署,该分区仪在模型的代理表示上使用图形sharding算法。 Merak还提出了非侵入性的API,用于通过最小的代码修改来扩展基础模型培训。此外,我们在Merak设计了高性能的3D平行运行时引擎。它使用多种技术来利用可用的培训资源,包括移动的关键路径管道时间表,该计划带来了更高的计算利用率,阶段感知的重新计算,可利用空闲工作者的记忆以及子额定张量的模型并行性,这些模型并联与通信和计算重叠。 64 GPU的实验显示,Merak可以加快在最新的3D平行性框架上,具有1.5、2.5、8.3和20亿的模型框架,最高可达1.42x,1.39x,1.43x和1.61 x分别。
translated by 谷歌翻译
大型ML型号和数据集已经需要使用多GPU系统进行分布式模型培训。为了利用多GPU系统提供的权力,消除GPU间通信中的瓶颈至关重要 - 互连异构性质的问题挑战。在这项工作中,我们呈现TACCL,这是用于大规模多GPU系统的集体通信原语的合成器。 TACCL将异形拓扑和输入大小进行编码为合成问题,以生成优化的通信算法。 TACCL建立在标准的NVIDIA集体通信库(NCCL)之上,允许它成为PYTORCH等框架中GPU通信的替代品,具有最小的变化。 TACCL为全球,AllToAll和ALLERDUCE等通信基元生成算法,该算法高达3美元的速度超过NCCL。使用TACCL的算法加快了专家模型内部混合物的端到端培训,以17 \%$。通过将优化问题分解成零件并利用多GPU拓扑中的对称性,TACCL在不到3分钟内合成高达80-GPU的集体,比其他基于综合的状态快至少两个数量级 - 艺术集体通信图书馆。
translated by 谷歌翻译
变压器模型的成功将深度学习模型量表推向了数十亿个参数。但是,由于单个GPU的内存资源有限,因此仍然缺乏选择最佳并行策略的最佳实践,因为它需要深度学习和并行计算方面的域专业知识。巨大的AI系统通过引入统一的界面来解决上述挑战,以将模型培训的顺序代码扩展到分布式环境。它支持并行训练方法,例如数据,管道,张量和序列并行性,以及与零冗余优化器集成的异质训练方法。与基线系统相比,巨大的AI可以实现大型型号的训练速度的2.76倍。
translated by 谷歌翻译
Distributed deep learning (DDL) systems strongly depend on network performance. Current electronic packet switched (EPS) network architectures and technologies suffer from variable diameter topologies, low-bisection bandwidth and over-subscription affecting completion time of communication and collective operations. We introduce a near-exascale, full-bisection bandwidth, all-to-all, single-hop, all-optical network architecture with nanosecond reconfiguration called RAMP, which supports large-scale distributed and parallel computing systems (12.8~Tbps per node for up to 65,536 nodes). For the first time, a custom RAMP-x MPI strategy and a network transcoder is proposed to run MPI collective operations across the optical circuit switched (OCS) network in a schedule-less and contention-less manner. RAMP achieves 7.6-171$\times$ speed-up in completion time across all MPI operations compared to realistic EPS and OCS counterparts. It can also deliver a 1.3-16$\times$ and 7.8-58$\times$ reduction in Megatron and DLRM training time respectively} while offering 42-53$\times$ and 3.3-12.4$\times$ improvement in energy consumption and cost respectively.
translated by 谷歌翻译
变形金刚是一种深入学习语言模型,用于数据中心中的自然语言处理(NLP)服务。在变压器模型中,生成的预训练的变压器(GPT)在文本生成或自然语言生成(NLG)中取得了显着的性能,它需要在摘要阶段处理大型输入上下文,然后是产生一个生成阶段的一次单词。常规平台(例如GPU)专门用于在摘要阶段平行处理大型输入,但是由于其顺序特征,它们的性能在生成阶段显着降低。因此,需要一个有效的硬件平台来解决由文本生成的顺序特征引起的高潜伏期。在本文中,我们提出了DFX,这是一种多FPGA加速器,该设备在摘要和发电阶段中执行GPT-2模型端到端,并具有低延迟和高吞吐量。 DFX使用模型并行性和优化的数据流,这是模型和硬件感知的设备之间快速同时执行执行。其计算核心根据自定义说明运行,并提供GPT-2操作端到端。我们在四个Xilinx Alveo U280 FPGAS上实现了建议的硬件体系结构,并利用了高带宽内存(HBM)的所有频道,以及用于高硬件效率的最大计算资源数量。 DFX在现代GPT-2模型上实现了四个NVIDIA V100 GPU的5.58倍加速度和3.99倍的能效。 DFX的成本效益比GPU设备更具成本效益,这表明它是云数据中心中文本生成工作负载的有前途解决方案。
translated by 谷歌翻译
基于变压器的神经模型在许多AI应用中使用。培训这些模型很昂贵,因为它需要大量的GPU资源和较长的持续时间。这是具有挑战性的,因为诸如句子之类的典型数据具有可变的长度,而变压器的计算模式比卷积神经网络更为复杂。现有系统要么仅专注于模型推理,要么仅针对BERT样编码器模型进行优化。在本文中,我们提出了LightSeq2,该系统是为GPU上的一般变压器模型加速培训的系统。我们提出了一系列针对变压器模型的特定计算流量和内存访问模式量身定制的GPU优化技术。 LightSeq2支持许多模型体系结构,包括BERT(仅编码),GPT(仅解码器),变压器(编码器编码器)和视觉变压器。我们对各种模型和基准测试的实验表明,LightSeq2始终比不同GPU上的先前系统更快(1.4-3.5倍)。特别是,与大型公共机器翻译基准(WMT14英语 - 德国人)上的现有系统相比,它获得了308%的培训速度。
translated by 谷歌翻译