解释性是决策系统的压迫问题。已经提出了许多后的HOC方法来解释任何机器学习模型的预测。但是,业务流程和决策系统很少归属于单个独立的模型。这些系统组合了产生关键预测的多个模型,然后应用决策规则以生成最终决定。为了解释此类决定,我们呈现SMACE,半模型 - 不可知论式解释器,一种新的解释方法,该方法将决策规则与现有的机器学习模型进行决策规则,以生成对最终用户身份定制的直观特征排名。我们表明,建立的模型 - 无可止境方法在这一框架中产生了不良的结果。
translated by 谷歌翻译
本文研究了与可解释的AI(XAI)实践有关的两个不同但相关的问题。机器学习(ML)在金融服务中越来越重要,例如预批准,信用承销,投资以及各种前端和后端活动。机器学习可以自动检测培训数据中的非线性和相互作用,从而促进更快,更准确的信用决策。但是,机器学习模型是不透明的,难以解释,这是建立可靠技术所需的关键要素。该研究比较了各种机器学习模型,包括单个分类器(逻辑回归,决策树,LDA,QDA),异质集合(Adaboost,随机森林)和顺序神经网络。结果表明,整体分类器和神经网络的表现优于表现。此外,使用基于美国P2P贷款平台Lending Club提供的开放式访问数据集评估了两种先进的事后不可解释能力 - 石灰和外形来评估基于ML的信用评分模型。对于这项研究,我们还使用机器学习算法来开发新的投资模型,并探索可以最大化盈利能力同时最大程度地降低风险的投资组合策略。
translated by 谷歌翻译
即使有效,模型的使用也必须伴随着转换数据的各个级别的理解(上游和下游)。因此,需求增加以定义单个数据与算法可以根据其分析可以做出的选择(例如,一种产品或一种促销报价的建议,或代表风险的保险费率)。模型用户必须确保模型不会区分,并且也可以解释其结果。本文介绍了模型解释的重要性,并解决了模型透明度的概念。在保险环境中,它专门说明了如何使用某些工具来强制执行当今可以利用机器学习的精算模型的控制。在一个简单的汽车保险中损失频率估计的示例中,我们展示了一些解释性方法的兴趣,以适应目标受众的解释。
translated by 谷歌翻译
In the last years many accurate decision support systems have been constructed as black boxes, that is as systems that hide their internal logic to the user. This lack of explanation constitutes both a practical and an ethical issue. The literature reports many approaches aimed at overcoming this crucial weakness sometimes at the cost of scarifying accuracy for interpretability. The applications in which black box decision systems can be used are various, and each approach is typically developed to provide a solution for a specific problem and, as a consequence, delineating explicitly or implicitly its own definition of interpretability and explanation. The aim of this paper is to provide a classification of the main problems addressed in the literature with respect to the notion of explanation and the type of black box system. Given a problem definition, a black box type, and a desired explanation this survey should help the researcher to find the proposals more useful for his own work. The proposed classification of approaches to open black box models should also be useful for putting the many research open questions in perspective.
translated by 谷歌翻译
在人类循环机器学习应用程序的背景下,如决策支持系统,可解释性方法应在不使用户等待的情况下提供可操作的见解。在本文中,我们提出了加速的模型 - 不可知论解释(ACME),一种可解释的方法,即在全球和本地层面迅速提供特征重要性分数。可以将acme应用于每个回归或分类模型的后验。 ACME计算功能排名不仅提供了一个什么,但它还提供了一个用于评估功能值的变化如何影响模型预测的原因 - 如果分析工具。我们评估了综合性和现实世界数据集的建议方法,同时也与福芙添加剂解释(Shap)相比,我们制作了灵感的方法,目前是最先进的模型无关的解释性方法。我们在生产解释的质量方面取得了可比的结果,同时急剧减少计算时间并为全局和局部解释提供一致的可视化。为了促进该领域的研究,为重复性,我们还提供了一种存储库,其中代码用于实验。
translated by 谷歌翻译
人工智能(AI)使机器能够从人类经验中学习,适应新的输入,并执行人类的人类任务。 AI正在迅速发展,从过程自动化到认知增强任务和智能流程/数据分析的方式转换业务方式。然而,人类用户的主要挑战是理解和适当地信任AI算法和方法的结果。在本文中,为了解决这一挑战,我们研究并分析了最近在解释的人工智能(XAI)方法和工具中所做的最新工作。我们介绍了一种新颖的XAI进程,便于生产可解释的模型,同时保持高水平的学习性能。我们提出了一种基于互动的证据方法,以帮助人类用户理解和信任启用AI的算法创建的结果和输出。我们在银行域中采用典型方案进行分析客户交易。我们开发数字仪表板以促进与算法的互动结果,并讨论如何提出的XAI方法如何显着提高数据科学家对理解启用AI的算法结果的置信度。
translated by 谷歌翻译
如今,人工智能(AI)已成为临床和远程医疗保健应用程序的基本组成部分,但是最佳性能的AI系统通常太复杂了,无法自我解释。可解释的AI(XAI)技术被定义为揭示系统的预测和决策背后的推理,并且在处理敏感和个人健康数据时,它们变得更加至关重要。值得注意的是,XAI并未在不同的研究领域和数据类型中引起相同的关注,尤其是在医疗保健领域。特别是,许多临床和远程健康应用程序分别基于表格和时间序列数据,而XAI并未在这些数据类型上进行分析,而计算机视觉和自然语言处理(NLP)是参考应用程序。为了提供最适合医疗领域表格和时间序列数据的XAI方法的概述,本文提供了过去5年中文献的审查,说明了生成的解释的类型以及为评估其相关性所提供的努力和质量。具体而言,我们确定临床验证,一致性评估,客观和标准化质量评估以及以人为本的质量评估作为确保最终用户有效解释的关键特征。最后,我们强调了该领域的主要研究挑战以及现有XAI方法的局限性。
translated by 谷歌翻译
由于它们在建模复杂的问题和处理高维数据集的有效性,因此已显示深神网络(DNN)在广泛的应用领域中的传统机器学习算法优于传统的机器学习算法。但是,许多现实生活数据集具有越来越高的维度,其中大量功能可能与手头的任务无关。包含此类功能不仅会引入不必要的噪声,还会提高计算复杂性。此外,由于许多特征之间的非线性和依赖性高,DNN模型往往不可避免地是不透明的,并且被视为黑盒方法,因为它们的内部功能不佳。解释良好的模型可以识别具有统计学意义的特征,并解释其影响模型结果的方式。在本文中,我们提出了一种有效的方法,可以在高维数据集的情况下提高黑框模型的分类任务。为此,我们首先在高维数据集上训练黑框模型,以了解执行分类的嵌入。为了分解黑框模型的内部工作原理并确定TOP-K重要特征,我们采用了不同的探测和扰动技术。然后,我们通过在TOP-K特征空间上通过可解释的替代模型来近似黑框模型的行为。最后,我们从替代模型中得出决策规则和本地解释,以解释个人决策。当在不同数据集上测试,尺寸在50到20,000之间的不同数据集上进行测试时,我们的方法优于最先进的方法,例如TABNET,XGBOOST和基于Shap的可解释性技术。
translated by 谷歌翻译
最先进的实体匹配(EM)方法很难解释,并且为EM带来可解释的AI具有重要的价值。不幸的是,大多数流行的解释性方法无法开箱即用,需要适应。在本文中,我们确定了将本地事后特征归因方法应用于实体匹配的三个挑战:跨记录的交互作用,不匹配的解释和灵敏度变化。我们提出了新颖的模型 - 静态和模式 - 富含模型的方法柠檬柠檬,该方法通过(i)产生双重解释来避免交叉记录的互动效果来应对所有三个挑战,(ii)介绍了归因潜力的新颖概念,以解释两个记录如何能够拥有如何具有匹配,(iii)自动选择解释粒度以匹配匹配器和记录对的灵敏度。公共数据集上的实验表明,所提出的方法更忠实于匹配器,并且在帮助用户了解匹配器的决策边界的工作中比以前的工作更具忠诚度。此外,用户研究表明,与标准的解释相比石灰的适应。
translated by 谷歌翻译
在本文中,我们对在表格数据的情况下进行了详尽的理论分析。我们证明,在较大的样本限制中,可以按照算法参数的函数以及与黑框模型相关的一些期望计算来计算表格石灰提供的可解释系数。当要解释的函数具有一些不错的代数结构(根据坐标的子集,线性,乘法或稀疏)时,我们的分析提供了对Lime提供的解释的有趣见解。这些可以应用于一系列机器学习模型,包括高斯内核或卡车随机森林。例如,对于线性函数,我们表明Lime具有理想的属性,可以提供与函数系数成正比的解释,以解释并忽略该函数未使用的坐标来解释。对于基于分区的回归器,另一方面,我们表明石灰会产生可能提供误导性解释的不希望的人工制品。
translated by 谷歌翻译
与经典的统计学习方法相比,机器和深度学习生存模型表现出相似甚至改进事件的预测能力,但太复杂了,无法被人类解释。有几种模型不合时宜的解释可以克服这个问题。但是,没有一个直接解释生存函数预测。在本文中,我们介绍了Survhap(t),这是第一个允许解释生存黑盒模型的解释。它基于Shapley添加性解释,其理论基础稳定,并在机器学习从业人员中广泛采用。拟议的方法旨在增强精确诊断和支持领域的专家做出决策。关于合成和医学数据的实验证实,survhap(t)可以检测具有时间依赖性效果的变量,并且其聚集是对变量对预测的重要性的决定因素,而不是存活。 survhap(t)是模型不可屈服的,可以应用于具有功能输出的所有型号。我们在http://github.com/mi2datalab/survshap中提供了python中时间相关解释的可访问实现。
translated by 谷歌翻译
Explainable artificial intelligence is proposed to provide explanations for reasoning performed by an Artificial Intelligence. There is no consensus on how to evaluate the quality of these explanations, since even the definition of explanation itself is not clear in the literature. In particular, for the widely known Local Linear Explanations, there are qualitative proposals for the evaluation of explanations, although they suffer from theoretical inconsistencies. The case of image is even more problematic, where a visual explanation seems to explain a decision while detecting edges is what it really does. There are a large number of metrics in the literature specialized in quantitatively measuring different qualitative aspects so we should be able to develop metrics capable of measuring in a robust and correct way the desirable aspects of the explanations. In this paper, we propose a procedure called REVEL to evaluate different aspects concerning the quality of explanations with a theoretically coherent development. This procedure has several advances in the state of the art: it standardizes the concepts of explanation and develops a series of metrics not only to be able to compare between them but also to obtain absolute information regarding the explanation itself. The experiments have been carried out on image four datasets as benchmark where we show REVEL's descriptive and analytical power.
translated by 谷歌翻译
由于算法预测对人类的影响增加,模型解释性已成为机器学习(ML)的重要问题。解释不仅可以帮助用户了解为什么ML模型做出某些预测,还可以帮助用户了解这些预测如何更改。在本论文中,我们研究了从三个有利位置的ML模型的解释性:算法,用户和教学法,并为解释性问题贡献了一些新颖的解决方案。
translated by 谷歌翻译
人工智能(AI)和机器学习(ML)在网络安全挑战中的应用已在行业和学术界的吸引力,部分原因是对关键系统(例如云基础架构和政府机构)的广泛恶意软件攻击。入侵检测系统(IDS)使用某些形式的AI,由于能够以高预测准确性处理大量数据,因此获得了广泛的采用。这些系统托管在组织网络安全操作中心(CSOC)中,作为一种防御工具,可监视和检测恶意网络流,否则会影响机密性,完整性和可用性(CIA)。 CSOC分析师依靠这些系统来决定检测到的威胁。但是,使用深度学习(DL)技术设计的IDS通常被视为黑匣子模型,并且没有为其预测提供理由。这为CSOC分析师造成了障碍,因为他们无法根据模型的预测改善决策。解决此问题的一种解决方案是设计可解释的ID(X-IDS)。这项调查回顾了可解释的AI(XAI)的最先进的ID,目前的挑战,并讨论了这些挑战如何涉及X-ID的设计。特别是,我们全面讨论了黑匣子和白盒方法。我们还在这些方法之间的性能和产生解释的能力方面提出了权衡。此外,我们提出了一种通用体系结构,该建筑认为人类在循环中,该架构可以用作设计X-ID时的指南。研究建议是从三个关键观点提出的:需要定义ID的解释性,需要为各种利益相关者量身定制的解释以及设计指标来评估解释的需求。
translated by 谷歌翻译
这项研究通过对三种不同类型的模型进行基准评估来调查机器学习模型对产生反事实解释的影响:决策树(完全透明,可解释的,白色盒子模型),随机森林(一种半解释,灰色盒模型)和神经网络(完全不透明的黑盒模型)。我们在五个不同数据集(Compas,成人,德国,德语,糖尿病和乳腺癌)中使用四种算法(DICE,WatchERCF,原型和GrowingSpheresCF)测试了反事实生成过程。我们的发现表明:(1)不同的机器学习模型对反事实解释的产生没有影响; (2)基于接近性损失函数的唯一算法是不可行的,不会提供有意义的解释; (3)在不保证反事实生成过程中的合理性的情况下,人们无法获得有意义的评估结果。如果对当前的最新指标进行评估,则不考虑其内部机制中不合理的算法将导致偏见和不可靠的结论; (4)强烈建议对定性分析(以及定量分析),以确保对反事实解释和偏见的潜在识别进行强有力的分析。
translated by 谷歌翻译
Explainability has been widely stated as a cornerstone of the responsible and trustworthy use of machine learning models. With the ubiquitous use of Deep Neural Network (DNN) models expanding to risk-sensitive and safety-critical domains, many methods have been proposed to explain the decisions of these models. Recent years have also seen concerted efforts that have shown how such explanations can be distorted (attacked) by minor input perturbations. While there have been many surveys that review explainability methods themselves, there has been no effort hitherto to assimilate the different methods and metrics proposed to study the robustness of explanations of DNN models. In this work, we present a comprehensive survey of methods that study, understand, attack, and defend explanations of DNN models. We also present a detailed review of different metrics used to evaluate explanation methods, as well as describe attributional attack and defense methods. We conclude with lessons and take-aways for the community towards ensuring robust explanations of DNN model predictions.
translated by 谷歌翻译
众所周知,端到端的神经NLP体系结构很难理解,这引起了近年来为解释性建模的许多努力。模型解释的基本原则是忠诚,即,解释应准确地代表模型预测背后的推理过程。这项调查首先讨论了忠诚的定义和评估及其对解释性的意义。然后,我们通过将方法分为五类来介绍忠实解释的最新进展:相似性方法,模型内部结构的分析,基于反向传播的方法,反事实干预和自我解释模型。每个类别将通过其代表性研究,优势和缺点来说明。最后,我们从它们的共同美德和局限性方面讨论了上述所有方法,并反思未来的工作方向忠实的解释性。对于有兴趣研究可解释性的研究人员,这项调查将为该领域提供可访问且全面的概述,为进一步探索提供基础。对于希望更好地了解自己的模型的用户,该调查将是一项介绍性手册,帮助选择最合适的解释方法。
translated by 谷歌翻译
Besides accuracy, recent studies on machine learning models have been addressing the question on how the obtained results can be interpreted. Indeed, while complex machine learning models are able to provide very good results in terms of accuracy even in challenging applications, it is difficult to interpret them. Aiming at providing some interpretability for such models, one of the most famous methods, called SHAP, borrows the Shapley value concept from game theory in order to locally explain the predicted outcome of an instance of interest. As the SHAP values calculation needs previous computations on all possible coalitions of attributes, its computational cost can be very high. Therefore, a SHAP-based method called Kernel SHAP adopts an efficient strategy that approximate such values with less computational effort. In this paper, we also address local interpretability in machine learning based on Shapley values. Firstly, we provide a straightforward formulation of a SHAP-based method for local interpretability by using the Choquet integral, which leads to both Shapley values and Shapley interaction indices. Moreover, we also adopt the concept of $k$-additive games from game theory, which contributes to reduce the computational effort when estimating the SHAP values. The obtained results attest that our proposal needs less computations on coalitions of attributes to approximate the SHAP values.
translated by 谷歌翻译
Artificial intelligence(AI) systems based on deep neural networks (DNNs) and machine learning (ML) algorithms are increasingly used to solve critical problems in bioinformatics, biomedical informatics, and precision medicine. However, complex DNN or ML models that are unavoidably opaque and perceived as black-box methods, may not be able to explain why and how they make certain decisions. Such black-box models are difficult to comprehend not only for targeted users and decision-makers but also for AI developers. Besides, in sensitive areas like healthcare, explainability and accountability are not only desirable properties of AI but also legal requirements -- especially when AI may have significant impacts on human lives. Explainable artificial intelligence (XAI) is an emerging field that aims to mitigate the opaqueness of black-box models and make it possible to interpret how AI systems make their decisions with transparency. An interpretable ML model can explain how it makes predictions and which factors affect the model's outcomes. The majority of state-of-the-art interpretable ML methods have been developed in a domain-agnostic way and originate from computer vision, automated reasoning, or even statistics. Many of these methods cannot be directly applied to bioinformatics problems, without prior customization, extension, and domain adoption. In this paper, we discuss the importance of explainability with a focus on bioinformatics. We analyse and comprehensively overview of model-specific and model-agnostic interpretable ML methods and tools. Via several case studies covering bioimaging, cancer genomics, and biomedical text mining, we show how bioinformatics research could benefit from XAI methods and how they could help improve decision fairness.
translated by 谷歌翻译
在本文中,我们提出了一种新的可解释性形式主义,旨在阐明测试集的每个输入变量如何影响机器学习模型的预测。因此,我们根据训练有素的机器学习决策规则提出了一个群体的解释性形式,它们是根据其对输入变量分布的可变性的反应。为了强调每个输入变量的影响,这种形式主义使用信息理论框架,该框架量化了基于熵投影的所有输入输出观测值的影响。因此,这是第一个统一和模型不可知的形式主义,使数据科学家能够解释输入变量之间的依赖性,它们对预测错误的影响以及它们对输出预测的影响。在大型样本案例中提供了熵投影的收敛速率。最重要的是,我们证明,计算框架中的解释具有低算法的复杂性,使其可扩展到现实生活中的大数据集。我们通过解释通过在各种数据集上使用XGBoost,随机森林或深层神经网络分类器(例如成人收入,MNIST,CELEBA,波士顿住房,IRIS以及合成的)上使用的复杂决策规则来说明我们的策略。最终,我们明确了基于单个观察结果的解释性策略石灰和摇摆的差异。可以通过使用自由分布的Python工具箱https://gems-ai.aniti.fr/来复制结果。
translated by 谷歌翻译