基于模型的增强学习(RL)是一种通过利用学习的单步动力学模型来计划想象中的动作来学习复杂行为的样本效率方法。但是,计划为长马操作计划的每项行动都是不切实际的,类似于每个肌肉运动的人类计划。相反,人类有效地计划具有高级技能来解决复杂的任务。从这种直觉中,我们提出了一个基于技能的RL框架(SKIMO),该框架能够使用技能动力学模型在技能空间中进行计划,该模型直接预测技能成果,而不是预测中级状态中的所有小细节,逐步。为了准确有效的长期计划,我们共同学习了先前经验的技能动力学模型和技能曲目。然后,我们利用学到的技能动力学模型准确模拟和计划技能空间中的长范围,这可以有效地学习长摩盛,稀疏的奖励任务。导航和操纵域中的实验结果表明,Skimo扩展了基于模型的方法的时间范围,并提高了基于模型的RL和基于技能的RL的样品效率。代码和视频可在\ url {https://clvrai.com/skimo}上找到
translated by 谷歌翻译
长摩根和包括一系列隐性子任务的日常任务仍然在离线机器人控制中构成了重大挑战。尽管许多先前的方法旨在通过模仿和离线增强学习的变体来解决这种设置,但学习的行为通常是狭窄的,并且经常努力实现可配置的长匹配目标。由于这两个范式都具有互补的优势和劣势,因此我们提出了一种新型的层次结构方法,结合了两种方法的优势,以从高维相机观察中学习任务无关的长胜压策略。具体而言,我们结合了一项低级政策,该政策通过模仿学习和从离线强化学习中学到的高级政策学习潜在的技能,以促进潜在的行为先验。各种模拟和真实机器人控制任务的实验表明,我们的配方使以前看不见的技能组合能够通过“缝制”潜在技能通过目标链条,并在绩效上提高绩效的顺序,从而实现潜在的目标。艺术基线。我们甚至还学习了一个多任务视觉运动策略,用于现实世界中25个不同的操纵任务,这既优于模仿学习和离线强化学习技术。
translated by 谷歌翻译
Skill-based reinforcement learning (RL) has emerged as a promising strategy to leverage prior knowledge for accelerated robot learning. Skills are typically extracted from expert demonstrations and are embedded into a latent space from which they can be sampled as actions by a high-level RL agent. However, this skill space is expansive, and not all skills are relevant for a given robot state, making exploration difficult. Furthermore, the downstream RL agent is limited to learning structurally similar tasks to those used to construct the skill space. We firstly propose accelerating exploration in the skill space using state-conditioned generative models to directly bias the high-level agent towards only sampling skills relevant to a given state based on prior experience. Next, we propose a low-level residual policy for fine-grained skill adaptation enabling downstream RL agents to adapt to unseen task variations. Finally, we validate our approach across four challenging manipulation tasks that differ from those used to build the skill space, demonstrating our ability to learn across task variations while significantly accelerating exploration, outperforming prior works. Code and videos are available on our project website: https://krishanrana.github.io/reskill.
translated by 谷歌翻译
强化学习可以培训有效执行复杂任务的政策。然而,对于长地平线任务,这些方法的性能与地平线脱落,通常需要推理和构成较低级别的技能。等级强化学习旨在通过为行动抽象提供一组低级技能来实现这一点。通过抽象空间状态,层次结构也可以进一步提高这一点。我们对适当的状态抽象应取决于可用的较低级别策略的功能。我们提出了价值函数空间:通过使用与每个较低级别的技能对应的值函数来产生这种表示的简单方法。这些价值函数捕获场景的可取性,从而形成了紧凑型摘要任务相关信息的表示,并强大地忽略了分散的人。迷宫解决和机器人操纵任务的实证评估表明,我们的方法提高了长地平的性能,并且能够比替代的无模型和基于模型的方法能够更好的零拍泛化。
translated by 谷歌翻译
We propose an approach for semantic imitation, which uses demonstrations from a source domain, e.g. human videos, to accelerate reinforcement learning (RL) in a different target domain, e.g. a robotic manipulator in a simulated kitchen. Instead of imitating low-level actions like joint velocities, our approach imitates the sequence of demonstrated semantic skills like "opening the microwave" or "turning on the stove". This allows us to transfer demonstrations across environments (e.g. real-world to simulated kitchen) and agent embodiments (e.g. bimanual human demonstration to robotic arm). We evaluate on three challenging cross-domain learning problems and match the performance of demonstration-accelerated RL approaches that require in-domain demonstrations. In a simulated kitchen environment, our approach learns long-horizon robot manipulation tasks, using less than 3 minutes of human video demonstrations from a real-world kitchen. This enables scaling robot learning via the reuse of demonstrations, e.g. collected as human videos, for learning in any number of target domains.
translated by 谷歌翻译
我们提出了一种层次结构的增强学习方法Hidio,可以以自我监督的方式学习任务不合时宜的选项,同时共同学习利用它们来解决稀疏的奖励任务。与当前倾向于制定目标的低水平任务或预定临时的低级政策不同的层次RL方法不同,Hidio鼓励下级选项学习与手头任务无关,几乎不需要假设或很少的知识任务结构。这些选项是通过基于选项子对象的固有熵最小化目标来学习的。博学的选择是多种多样的,任务不可能的。在稀疏的机器人操作和导航任务的实验中,Hidio比常规RL基准和两种最先进的层次RL方法,其样品效率更高。
translated by 谷歌翻译
从视觉感觉数据中控制人造代理是一项艰巨的任务。强化学习(RL)算法可以在这方面取得成功,但需要代理与环境之间进行大量相互作用。为了减轻该问题,无监督的RL建议采用自我监督的互动和学习,以更快地适应未来的任务。但是,目前的无监督策略是否可以改善概括能力,尤其是在视觉控制设置中。在这项工作中,我们为数据有效的视觉控制设计了有效的无监督RL策略。首先,我们表明,使用无监督的RL收集的数据预先训练的世界模型可以促进适应未来的任务。然后,我们与我们的混合计划者分析了一些设计选择,以有效地适应了代理的预训练组件,并在想象中学习和计划,并与我们的混合计划者一起使用,我们将其dub dyna-mpc进行了。通过结合一项大规模实证研究的发现,我们建立了一种方法,该方法强烈改善了无监督的RL基准测试的性能,需要20美元$ \ times $ $ $ $ $ \少于数据以符合监督方法的性能。该方法还表明了在现实词的RL基准测试上的稳健性能,暗示该方法概括为嘈杂的环境。
translated by 谷歌翻译
The ability to effectively reuse prior knowledge is a key requirement when building general and flexible Reinforcement Learning (RL) agents. Skill reuse is one of the most common approaches, but current methods have considerable limitations.For example, fine-tuning an existing policy frequently fails, as the policy can degrade rapidly early in training. In a similar vein, distillation of expert behavior can lead to poor results when given sub-optimal experts. We compare several common approaches for skill transfer on multiple domains including changes in task and system dynamics. We identify how existing methods can fail and introduce an alternative approach to mitigate these problems. Our approach learns to sequence existing temporally-extended skills for exploration but learns the final policy directly from the raw experience. This conceptual split enables rapid adaptation and thus efficient data collection but without constraining the final solution.It significantly outperforms many classical methods across a suite of evaluation tasks and we use a broad set of ablations to highlight the importance of differentc omponents of our method.
translated by 谷歌翻译
有效的探索是深度强化学习的关键挑战。几种方法,例如行为先验,能够利用离线数据,以便在复杂任务上有效加速加强学习。但是,如果手动的任务与所证明的任务过度偏离,则此类方法的有效性是有限的。在我们的工作中,我们建议从离线数据中学习功能,这些功能由更加多样化的任务共享,例如动作与定向之间的相关性。因此,我们介绍了无国有先验,该先验直接在显示的轨迹中直接建模时间一致性,并且即使在对简单任务收集的数据进行培训时,也能够在复杂的任务中推动探索。此外,我们通过从政策和行动之前的概率混合物中动态采样动作,引入了一种新颖的集成方案,用于非政策强化学习中的动作研究。我们将我们的方法与强大的基线相提并论,并提供了经验证据,表明它可以在稀疏奖励环境下的长途持续控制任务中加速加强学习。
translated by 谷歌翻译
技能链是一种希望通过顺序结合以前学习的技能来合成复杂行为的有希望的方法。然而,当政策遭遇在培训期间从未见过的起始状态时,幼稚的技能组成失败。对于成功的技能链接,先前的方法试图扩大策略的起始状态分布。然而,这些方法需要覆盖更大的状态分布,因为更多的策略进行测序,因此仅限于短的技能序列。在本文中,我们通过在对抗学习框架中规范终端状态分布来提出连锁多个初始状态分布的多重政策。我们评估了我们对家具组件的两个复杂的长地平衡任务的方法。我们的结果表明,我们的方法建立了第一种无模型加强学习算法来解决这些任务;而先前的技能链接方法失败。代码和视频可在https://clvrai.com/skill-chaining上获得
translated by 谷歌翻译
在本文中,我们提出了一种数据驱动的技能学习方法,以完全从离线的远程播放数据数据完全求解高度动态的操纵任务。我们使用双边遥控系统连续收集一大批灵活而敏捷的操纵行为,通过向操作员提供直接的力反馈来实现。我们以目标条件条件的政策和技能条件状态过渡动态的形式共同学习国家条件潜在技能分布和技能解码器网络。这使人们可以在学习的技能空间中执行基于模型的在线计划和离线计划方法,以在测试时完成任何给定的下游任务。我们提供模拟和现实世界的双臂操纵实验,表明可以实时组成一系列力控制的动态操纵技能,以成功地将框配置为随机选择的目标位置和方向;请参阅补充视频,https://youtu.be/la5b236ilzm。
translated by 谷歌翻译
数据驱动的模型预测控制比无模型方法具有两个关键优势:通过模型学习提高样本效率的潜力,并且作为计划增加的计算预算的更好性能。但是,在漫长的视野上进行计划既昂贵又挑战,以获得准确的环境模型。在这项工作中,我们结合了无模型和基于模型的方法的优势。我们在短范围内使用学习的面向任务的潜在动力学模型进行局部轨迹优化,并使用学习的终端值函数来估计长期回报,这两者都是通过时间差异学习共同学习的。我们的TD-MPC方法比在DMCONTROL和META-WORLD的状态和基于图像的连续控制任务上实现了卓越的样本效率和渐近性能。代码和视频结果可在https://nicklashansen.github.io/td-mpc上获得。
translated by 谷歌翻译
Poor sample efficiency continues to be the primary challenge for deployment of deep Reinforcement Learning (RL) algorithms for real-world applications, and in particular for visuo-motor control. Model-based RL has the potential to be highly sample efficient by concurrently learning a world model and using synthetic rollouts for planning and policy improvement. However, in practice, sample-efficient learning with model-based RL is bottlenecked by the exploration challenge. In this work, we find that leveraging just a handful of demonstrations can dramatically improve the sample-efficiency of model-based RL. Simply appending demonstrations to the interaction dataset, however, does not suffice. We identify key ingredients for leveraging demonstrations in model learning -- policy pretraining, targeted exploration, and oversampling of demonstration data -- which forms the three phases of our model-based RL framework. We empirically study three complex visuo-motor control domains and find that our method is 150%-250% more successful in completing sparse reward tasks compared to prior approaches in the low data regime (100K interaction steps, 5 demonstrations). Code and videos are available at: https://nicklashansen.github.io/modemrl
translated by 谷歌翻译
我们提出了一种新型的参数化技能学习算法,旨在学习可转移的参数化技能并将其合成为新的动作空间,以支持长期任务中的有效学习。我们首先提出了新颖的学习目标 - 以轨迹为中心的多样性和平稳性 - 允许代理商能够重复使用的参数化技能。我们的代理商可以使用这些学习的技能来构建时间扩展的参数化行动马尔可夫决策过程,我们为此提出了一种层次的参与者 - 批判算法,旨在通过学习技能有效地学习高级控制政策。我们从经验上证明,所提出的算法使代理能够解决复杂的长途障碍源环境。
translated by 谷歌翻译
对于在现实世界中运营的机器人来说,期望学习可以有效地转移和适应许多任务和场景的可重复使用的行为。我们提出了一种使用分层混合潜变量模型来从数据中学习抽象运动技能的方法。与现有工作相比,我们的方法利用了离散和连续潜在变量的三级层次结构,以捕获一组高级行为,同时允许如何执行它们的差异。我们在操纵域中展示该方法可以有效地将离线数据脱落到不同的可执行行为,同时保留连续潜变量模型的灵活性。由此产生的技能可以在新的任务,看不见的对象和州内转移和微调到基于视觉的策略,与现有的技能和仿制的方法相比,产生更好的样本效率和渐近性能。我们进一步分析了技能最有益的方式以及何时:他们鼓励定向探索来涵盖与任务相关的国家空间的大区域,使其在挑战稀疏奖励环境中最有效。
translated by 谷歌翻译
需要长马计划和持续控制能力的问题对现有的强化学习剂构成了重大挑战。在本文中,我们介绍了一种新型的分层增强学习代理,该学习代理将延时的技能与持续控制的技能与远期模型联系起来,以象征性的分离环境的计划进行计划。我们认为我们的代理商符合符号效应的多样化技能。我们制定了一种客观且相应的算法,该算法通过已知的抽象来通过内在动机来无监督学习各种技能。这些技能是通过符号前向模型共同学习的,该模型捕获了国家抽象中技能执行的影响。训练后,我们可以使用向前模型来利用符号动作的技能来进行长途计划,并随后使用学识渊博的连续行动控制技能执行计划。拟议的算法学习了技能和前瞻性模型,可用于解决复杂的任务,这些任务既需要连续控制和长效计划功能,却具有很高的成功率。它与其他平坦和分层的增强学习基线代理相比,并通过真正的机器人成功证明。
translated by 谷歌翻译
For an autonomous agent to fulfill a wide range of user-specified goals at test time, it must be able to learn broadly applicable and general-purpose skill repertoires. Furthermore, to provide the requisite level of generality, these skills must handle raw sensory input such as images. In this paper, we propose an algorithm that acquires such general-purpose skills by combining unsupervised representation learning and reinforcement learning of goal-conditioned policies. Since the particular goals that might be required at test-time are not known in advance, the agent performs a self-supervised "practice" phase where it imagines goals and attempts to achieve them. We learn a visual representation with three distinct purposes: sampling goals for self-supervised practice, providing a structured transformation of raw sensory inputs, and computing a reward signal for goal reaching. We also propose a retroactive goal relabeling scheme to further improve the sample-efficiency of our method. Our off-policy algorithm is efficient enough to learn policies that operate on raw image observations and goals for a real-world robotic system, and substantially outperforms prior techniques. * Equal contribution. Order was determined by coin flip.
translated by 谷歌翻译
与一组复杂的RL问题有关的目标条件加固学习(GCRL)训练代理在特定情况下实现不同的目标。与仅根据州或观察结果了解政策的标准RL解决方案相比,GCRL还要求代理商根据不同的目标做出决策。在这项调查中,我们对GCRL的挑战和算法进行了全面的概述。首先,我们回答该领域研究的基本问题。然后,我们解释了如何代表目标并介绍如何从不同角度设计现有解决方案。最后,我们得出结论,并讨论最近研究重点的潜在未来前景。
translated by 谷歌翻译
强化学习(RL)在机器人中的应用通常受高数据需求的限制。另一方面,许多机器人场景中容易获得近似模型,使基于模型的方法,如规划数据有效的替代方案。尽管如此,这些方法的性能遭受了模型不精确或错误。从这个意义上讲,RL和基于模型的规划者的各个优势和弱点是。在目前的工作中,我们调查如何将两种方法集成到结合其优势的一个框架中。我们介绍了学习执行(L2E),从而利用近似计划中包含的信息学习有关计划的普遍政策。在我们的机器人操纵实验中,与纯RL,纯规划或基线方法相比,L2E在结合学习和规划的基线方法时表现出增加的性能。
translated by 谷歌翻译
元强化学习(RL)方法可以使用比标准RL少的数据级的元培训策略,但元培训本身既昂贵又耗时。如果我们可以在离线数据上进行元训练,那么我们可以重复使用相同的静态数据集,该数据集将一次标记为不同任务的奖励,以在元测试时间适应各种新任务的元训练策略。尽管此功能将使Meta-RL成为现实使用的实用工具,但离线META-RL提出了除在线META-RL或标准离线RL设置之外的其他挑战。 Meta-RL学习了一种探索策略,该策略收集了用于适应的数据,并元培训策略迅速适应了新任务的数据。由于该策略是在固定的离线数据集上进行了元训练的,因此当适应学识渊博的勘探策略收集的数据时,它可能表现得不可预测,这与离线数据有系统地不同,从而导致分布变化。我们提出了一种混合脱机元元素算法,该算法使用带有奖励的脱机数据来进行自适应策略,然后收集其他无监督的在线数据,而无需任何奖励标签来桥接这一分配变化。通过不需要在线收集的奖励标签,此数据可以便宜得多。我们将我们的方法比较了在模拟机器人的运动和操纵任务上进行离线元rl的先前工作,并发现使用其他无监督的在线数据收集可以显着提高元训练政策的自适应能力,从而匹配完全在线的表现。在一系列具有挑战性的域上,需要对新任务进行概括。
translated by 谷歌翻译