Online Temporal Action Localization (On-TAL) aims to immediately provide action instances from untrimmed streaming videos. The model is not allowed to utilize future frames and any processing techniques to modify past predictions, making On-TAL much more challenging. In this paper, we propose a simple yet effective framework, termed SimOn, that learns to predict action instances using the popular Transformer architecture in an end-to-end manner. Specifically, the model takes the current frame feature as a query and a set of past context information as keys and values of the Transformer. Different from the prior work that uses a set of outputs of the model as past contexts, we leverage the past visual context and the learnable context embedding for the current query. Experimental results on the THUMOS14 and ActivityNet1.3 datasets show that our model remarkably outperforms the previous methods, achieving a new state-of-the-art On-TAL performance. In addition, the evaluation for Online Detection of Action Start (ODAS) demonstrates the effectiveness and robustness of our method in the online setting. The code is available at https://github.com/TuanTNG/SimOn
translated by 谷歌翻译
时间动作本地化(TAL)是识别视频中一组动作的任务,该任务涉及将开始和终点定位并对每个操作实例进行分类。现有方法通过使用预定义的锚窗或启发式自下而上的边界匹配策略来解决此任务,这些策略是推理时间的主要瓶颈。此外,主要的挑战是由于缺乏全球上下文信息而无法捕获远程动作。在本文中,我们介绍了一个无锚的框架,称为HTNET,该框架预测了一组<开始时间,结束时间,类,类>三胞胎,这些视频基于变压器体系结构。在预测粗边界之后,我们通过背景特征采样(BFS)模块和分层变压器对其进行完善,这使我们的模型能够汇总全局上下文信息,并有效利用视频中固有的语义关系。我们演示了我们的方法如何在两个TAL基准数据集上定位准确的动作实例并实现最先进的性能:Thumos14和ActivityNet 1.3。
translated by 谷歌翻译
时间动作检测(TAD)旨在确定未修剪视频中每个动作实例的语义标签和边界。先前的方法通过复杂的管道来解决此任务。在本文中,我们提出了一个具有简单集的预测管道的端到端时间动作检测变压器(TADTR)。给定一组名为“动作查询”的可学习嵌入,Tadtr可以从每个查询的视频中自适应提取时间上下文,并直接预测动作实例。为了适应TAD的变压器,我们提出了三个改进,以提高其所在地意识。核心是一个时间可变形的注意模块,在视频中有选择地参加一组稀疏的密钥片段。片段的完善机制和动作回归头旨在完善预测实例的边界和信心。 TADTR需要比以前的检测器更低的计算成本,同时保留了出色的性能。作为一个独立的检测器,它在Thumos14(56.7%地图)和HACS段(32.09%地图)上实现了最先进的性能。结合一个额外的动作分类器,它在ActivityNet-1.3上获得了36.75%的地图。我们的代码可在\ url {https://github.com/xlliu7/tadtr}上获得。
translated by 谷歌翻译
在线行动检测旨在基于长期的历史观察结果对当前框架进行准确的行动预测。同时,它需要对在线流视频进行实时推断。在本文中,我们主张一个新颖有效的在线行动检测原则。它仅在一个窗口中更新最新,最古老的历史表示,但重复了已经计算的中间图表。基于这一原则,我们引入了一个基于窗口的级联变压器,带有圆形历史队列,在每个窗口上都进行了多阶段的注意力和级联精炼。我们还探讨了在线操作检测与其脱机行动分段作为辅助任务之间的关联。我们发现,这种额外的监督有助于判别历史的聚类,并充当功能增强,以更好地培训分类器和级联改善。我们提出的方法在三个具有挑战性的数据集Thumos'14,TVSeries和HDD上实现了最新的表演。接受后将可用。
translated by 谷歌翻译
基于自我注意力的变压器模型已显示出令人印象深刻的图像分类和对象检测结果,并且最近用于视频理解。受此成功的启发,我们研究了变压器网络在视频中的时间动作本地化的应用。为此,我们提出了ActionFormer,这是一个简单而强大的模型,可在不使用动作建议或依靠预定义的锚点窗口中识别其及时识别其类别并识别其类别。 ActionFormer将多尺度特征表示与局部自我发作相结合,并使用轻加权解码器对每个时刻进行分类并估算相应的动作边界。我们表明,这种精心策划的设计会在先前的工作中进行重大改进。如果没有铃铛和口哨声,ActionFormer在Thumos14上的TIOU = 0.5的地图达到了71.0%的地图,表现优于最佳先前模型的绝对百分比14.1。此外,ActionFormer在ActivityNet 1.3(平均地图36.6%)和Epic-Kitchens 100(+先前工作的平均地图+13.5%)上显示出很强的结果。我们的代码可从http://github.com/happyharrycn/actionformer_release获得。
translated by 谷歌翻译
在线操作检测是一旦在流视频中进行的操作,就可以预测该动作。一个主要的挑战是,该模型无法访问未来,并且必须仅依靠历史,即到目前为止观察到的框架来做出预测。因此,重要的是要强调历史的一部分,这些部分对当前框架的预测更有意义。我们提出了带有背景抑制的封闭历史单元的Gatehub,其中包括一种新颖的位置引导的封闭式跨注意机制,以增强或抑制历史的一部分,因为它们在当前框架预测方面的信息程度。 GateHub进一步建议未来的历史记录(FAH),通过使用后来观察到的框架,使历史特征更具信息性。在一个统一的框架中,GateHub集成了变压器的远程时间建模的能力以及经常性模型选择性编码相关信息的能力。 GateHub还引入了一个背景抑制目标,以进一步减轻与动作框架非常相似的误报背景框架。对三个基准数据集(Thumos,TVSeries和HDD)进行了广泛的验证,这表明GateHub显着胜过所有现有方法,并且比现有最佳工作更有效。此外,与所有需要RGB和光流信息进行预测的现有方法相比,GateHub的无流版本能够以2.8倍的帧速率获得更高或密切的精度。
translated by 谷歌翻译
在视频的每一帧中,流式传输视频识别原因及其动作。良好的流识别模型捕获了长期动态和视频的短期变化。不幸的是,在大多数现有方法中,计算复杂性随所考虑的动力学的长度线性或二次增长。此问题在基于变压器的体系结构中特别明显。为了解决这个问题,我们通过内核镜头重新制定了视频变压器中的跨注意事项,并应用了两种暂时的平滑核:盒子内核或拉普拉斯内核。最终的流动注意力可以从框架到框架重新重新计算,并且仅需要恒定的时间更新每个帧。基于这个想法,我们构建了一种时间平滑变压器Testra,它具有恒定的缓存和计算开销的任意输入。具体而言,它的运行$ 6 \ times $ $ $比基于滑动窗口的同等滑动变压器的运行速度快,在流设置中具有2,048帧。此外,由于时间跨度的增加,Testra在Thumos'14和Epic-Kitchen-100上取得了最新的结果,这是两个标准的在线操作检测和动作预期数据集。 Testra的实时版本优于Thumos'14数据集上的所有事先方法。
translated by 谷歌翻译
时间行动提案生成(TAPG)是一个具有挑战性的任务,旨在在具有时间边界的未经监控视频中找到动作实例。为了评估提案的信任,现有的作品通常预测建议与地面真理之间的时间交叉联盟(TIOO)监督的提案的行动得分。在本文中,我们通过利用背景预测得分来限制提案的信心,创新地提出了一般的辅助背景约束理念,以进一步抑制低质量的建议。以这种方式,可以轻松地将背景约束概念用于现有的TAPG方法(例如,BMN,GTAD)。从这个角度来看,我们提出了背景约束网络(BCNet),以进一步利用行动和背景的丰富信息。具体地,我们介绍了一种动作 - 背景交互模块,用于可靠的置信度评估,它通过帧和剪辑级别的注意机制模拟了动作和背景之间的不一致。在两个流行的基准测试中进行了广泛的实验,即ActivityNet-1.3和Thumos14。结果表明,我们的方法优于最先进的方法。配备现有的Action Classifier,我们的方法还可以在时间动作本地化任务上实现显着性能。
translated by 谷歌翻译
时间动作本地化的主要挑战是在未修剪的视频中从各种共同出现的成分(例如上下文和背景)中获取细微的人类行为。尽管先前的方法通过设计高级动作探测器取得了重大进展,但它们仍然遭受这些共发生的成分,这些成分通常占据视频中实际动作内容。在本文中,我们探讨了视频片段的两个正交但互补的方面,即动作功能和共存功能。尤其是,我们通过在视频片段中解开这两种功能并重新组合它们来生成具有更明显的动作信息以进行准确的动作本地化的新功能表示形式,从而开发了一项新颖的辅助任务。我们称我们的方法重新处理,该方法首先显式将动作内容分解并正规化其共发生的特征,然后合成新的动作主导的视频表示形式。对Thumos14和ActivityNet V1.3的广泛实验结果和消融研究表明,我们的新表示形式与简单的动作检测器相结合可以显着改善动作定位性能。
translated by 谷歌翻译
在统一框架中为检测和跟踪建模的时间信息已被证明是视频实例分割(VIS)的有希望的解决方案。但是,如何有效地将时间信息纳入在线模型仍然是一个空旷的问题。在这项工作中,我们提出了一个名为Inspeacity(IAI)的新的在线Vis范式,该范式以有效的方式对检测和跟踪进行建模。详细说明,IAI采用了一个新颖的识别模块来明确预测跟踪实例的标识号。为了传递时间信息跨框架,IAI使用了结合当前特征和过去嵌入的关联模块。值得注意的是,IAI可以与不同的图像模型集成。我们对三个VIS基准进行了广泛的实验。 IAI在YouTube-VIS-2019(Resnet-101 41.9地图)和YouTube-VIS-2021(Resnet-50 37.7地图)上胜过所有在线竞争对手。令人惊讶的是,在更具挑战性的OVI上,IAI实现了SOTA性能(20.3地图)。代码可从https://github.com/zfonemore/iai获得
translated by 谷歌翻译
Detection Transformer (DETR) and Deformable DETR have been proposed to eliminate the need for many hand-designed components in object detection while demonstrating good performance as previous complex hand-crafted detectors. However, their performance on Video Object Detection (VOD) has not been well explored. In this paper, we present TransVOD, the first end-to-end video object detection system based on spatial-temporal Transformer architectures. The first goal of this paper is to streamline the pipeline of VOD, effectively removing the need for many hand-crafted components for feature aggregation, e.g., optical flow model, relation networks. Besides, benefited from the object query design in DETR, our method does not need complicated post-processing methods such as Seq-NMS. In particular, we present a temporal Transformer to aggregate both the spatial object queries and the feature memories of each frame. Our temporal transformer consists of two components: Temporal Query Encoder (TQE) to fuse object queries, and Temporal Deformable Transformer Decoder (TDTD) to obtain current frame detection results. These designs boost the strong baseline deformable DETR by a significant margin (2 %-4 % mAP) on the ImageNet VID dataset. TransVOD yields comparable performances on the benchmark of ImageNet VID. Then, we present two improved versions of TransVOD including TransVOD++ and TransVOD Lite. The former fuses object-level information into object query via dynamic convolution while the latter models the entire video clips as the output to speed up the inference time. We give detailed analysis of all three models in the experiment part. In particular, our proposed TransVOD++ sets a new state-of-the-art record in terms of accuracy on ImageNet VID with 90.0 % mAP. Our proposed TransVOD Lite also achieves the best speed and accuracy trade-off with 83.7 % mAP while running at around 30 FPS on a single V100 GPU device. Code and models will be available for further research.
translated by 谷歌翻译
弱监督的时间动作本地化(WSTAL)旨在仅使用视频级别标签将动作定位在未修剪的视频中。当前,大多数最先进的WSTAL方法遵循多实施学习(MIL)管道:首先产生摘要级预测,然后汇总到视频级别的预测。但是,我们认为现有的方法忽略了两个重要的缺点:1)使用运动信息不足和2)盛行的跨凝结训练损失的不相容性。在本文中,我们分析了光流功能背后的运动提示是互补的信息。受到这一点的启发,我们建议建立一个与上下文有关的运动,称为运动性。具体而言,将运动图引入基于局部运动载体(例如光流)的模型运动性。此外,为了突出显示更多信息的视频片段,提出了运动引导的损失,以调节运动性得分条件的网络训练。广泛的消融研究证实,运动性有效地模拟了利益的作用,运动引导的损失会导致更准确的结果。此外,我们的运动引导损失是插件损失功能,适用于现有的WSTAL方法。基于标准的MIL管道,我们的方法在不丧失的情况下,我们的方法在三个具有挑战性的基准上实现了新的最新性能,包括Thumos'14,ActivityNet v1.2和v1.3。
translated by 谷歌翻译
动作检测是一个必不可少的和具有挑战性的任务,特别是对于未经监测视频的密集标记数据集。在这些数据集中,时间关系是复杂的,包括综合动作等挑战和共同发生的动作。为了检测这些复杂视频中的动作,有效地捕获视频中的短期和长期时间信息是至关重要的。为此,我们提出了一种用于动作检测的新型Converransformer网络。该网络包括三个主要组件:(1)时间编码器模块广泛探讨多个时间分辨率的全局和局部时间关系。 (2)时间尺度混频器模块有效地熔化多尺度特征以具有统一的特征表示。 (3)分类模块用于学习实例中心相对位置并预测帧级分类分数。多个数据集的大量实验,包括Charades,TSU和Multithumos,确认了我们所提出的方法的有效性。我们的网络在所有三个数据集上占据了最先进的方法。
translated by 谷歌翻译
视频摘要旨在自动生成视频的摘要(故事板或视频浏览器),这可以促进大规模视频检索和浏览。大多数现有方法对单个视频进行视频摘要,这些视频忽略了相似视频之间的相关性。然而,这种相关性也是视频理解和视频摘要的信息。为了解决此限制,我们提出了基于分层变压器(VJMHT)的视频联合建模,共综合化,这考虑了跨视频的语义依赖关系。具体而言,VJMHT由两层变压器组成:第一层从类似视频的各个拍摄提取语义表示,而第二层执行射门视频联合建模以聚合交叉视频语义信息。通过这种方式,可以明确建模并学习完整的跨视频高级模式,以便为个人视频的摘要而学习。此外,引入了基于变压器的视频表示重建,以最大化摘要和原始视频之间的高电平相似性。进行广泛的实验以验证所提出的模块的有效性以及VJMHT在F测量和基于秩的评估方面的优越性。
translated by 谷歌翻译
视频中的实时和在线行动本地化是一个关键但极具挑战性的问题。准确的行动定位需要利用时间和空间信息。最近的尝试通过使用计算密集的3D CNN架构或高度冗余的双流架构来实现这一目标,使它们既不适用于实时在线应用程序。为了在高度挑战的实时约束下完成活动本地化,我们提出利用基于快速高效的关键点的边界框预测到空间本地化动作。然后,我们介绍一种管链接算法,其在闭塞存在下在时间上保持动作管的连续性。此外,我们通过将时间和空间信息与级联输入组合到单个网络的级联输入来消除对双流架构的需要,允许网络从两种类型的信息中学习。使用结构相似索引图有效地提取了时间信息,而不是计算密集的光学流量。尽管我们的方法简单,我们的轻质端到端架构在挑战的UCF101-24数据集上实现了最先进的框架地图,达到了74.7%,展示了以前最好的在线方法的性能增益为6.4% 。与在线和离线方法两者相比,我们还实现了最先进的视频地图结果。此外,我们的模型实现了41.8 FPS的帧速率,这是对当代实时方法的10.7%。
translated by 谷歌翻译
时间动作本地化在视频分析中起着重要作用,该视频分析旨在将动作定位和分类在未修剪视频中。先前的方法通常可以预测单个时间尺度的特征空间上的动作。但是,低级量表的时间特征缺乏足够的语义来进行动作分类,而高级尺度则无法提供动作边界的丰富细节。为了解决这个问题,我们建议预测多个颞尺度特征空间的动作。具体而言,我们使用不同尺度的精致特征金字塔将语义从高级尺度传递到低级尺度。此外,为了建立整个视频的长时间尺度,我们使用时空变压器编码器来捕获视频帧的远程依赖性。然后,具有远距离依赖性的精制特征被送入分类器以进行粗糙的动作预测。最后,为了进一步提高预测准确性,我们建议使用框架级别的自我注意模块来完善每个动作实例的分类和边界。广泛的实验表明,所提出的方法可以超越Thumos14数据集上的最先进方法,并在ActivityNet1.3数据集上实现可比性的性能。与A2NET(tip20,avg \ {0.3:0.7 \}),sub-action(csvt2022,avg \ {0.1:0.5 \})和afsd(cvpr21,avg \ {0.3:0.7 \}) ,提出的方法分别可以提高12.6 \%,17.4 \%和2.2 \%
translated by 谷歌翻译
在这项工作中,我们呈现SEQFormer,这是一个令人沮丧的视频实例分段模型。 SEQFormer遵循Vision变换器的原理,该方法模型视频帧之间的实例关系。然而,我们观察到一个独立的实例查询足以捕获视频中的时间序列,但应该独立地使用每个帧进行注意力机制。为此,SEQFormer在每个帧中定位一个实例,并聚合时间信息以学习视频级实例的强大表示,其用于动态地预测每个帧上的掩模序列。实例跟踪自然地实现而不进行跟踪分支或后处理。在YouTube-VIS数据集上,SEQFormer使用Reset-50个骨干和49.0 AP实现47.4个AP,其中Reset-101骨干,没有响铃和吹口哨。此类成果分别显着超过了以前的最先进的性能4.6和4.4。此外,与最近提出的Swin变压器集成,SEQFormer可以实现59.3的高得多。我们希望SEQFormer可能是一个强大的基线,促进了视频实例分段中的未来研究,同时使用更强大,准确,整洁的模型来实现该字段。代码和预先训练的型号在https://github.com/wjf5203/seqformer上公开使用。
translated by 谷歌翻译
时间动作本地化旨在预测未修剪长视频中每个动作实例的边界和类别。基于锚或建议的大多数先前方法忽略了整个视频序列中的全局本地上下文相互作用。此外,他们的多阶段设计无法直接生成动作边界和类别。为了解决上述问题,本文提出了一种新颖的端到端模型,称为自适应感知变压器(简称apperformer)。具体而言,Adaperformer探索了双支球多头的自我发项机制。一个分支会照顾全球感知的关注,该注意力可以模拟整个视频序列并汇总全球相关环境。而其他分支集中于局部卷积转移,以通过我们的双向移动操作来汇总框架内和框架间信息。端到端性质在没有额外步骤的情况下产生视频动作的边界和类别。提供了广泛的实验以及消融研究,以揭示我们设计的有效性。我们的方法在Thumos14数据集上实现了最先进的准确性(根据map@0.5、42.6 \%map@0.7和62.7 \%map@avg),并在活动网络上获得竞争性能, -1.3数据集,平均地图为36.1 \%。代码和型号可在https://github.com/soupero/adaperformer上找到。
translated by 谷歌翻译
现有的时间动作检测(TAD)方法依赖于每个视频产生大量的建议。这导致由于提案生成和/或主张行动实例评估以及最终的高计算成本而导致复杂的模型设计。在这项工作中,我们首次提出了一个带有全局分割掩码(TAG)的无建议的时间动作检测模型。我们的核心想法是以完整的视频长度共同学习每个操作实例的全局细分面具。标签模型与基于常规建议的方法有显着不同,通过关注全球时间表示学习,直接在没有建议的情况下直接检测本地起点和终点的行动点。此外,通过对TAD进行整体建模,而不是在单个建议级别上进行本地建模,标签需要更简单的模型体系结构,计算成本较低。广泛的实验表明,尽管设计更简单,但标签的表现优于现有的TAD方法,在两个基准上实现了新的最新性能。重要的是,训练的速度更快约20倍,推理效率更高。我们的标签的Pytorch实现可在https://github.com/sauradip/tags上获得。
translated by 谷歌翻译
We introduce the Action Transformer model for recognizing and localizing human actions in video clips. We repurpose a Transformer-style architecture to aggregate features from the spatiotemporal context around the person whose actions we are trying to classify. We show that by using high-resolution, person-specific, class-agnostic queries, the model spontaneously learns to track individual people and to pick up on semantic context from the actions of others. Additionally its attention mechanism learns to emphasize hands and faces, which are often crucial to discriminate an action -all without explicit supervision other than boxes and class labels. We train and test our Action Transformer network on the Atomic Visual Actions (AVA) dataset, outperforming the state-of-the-art by a significant margin using only raw RGB frames as input.
translated by 谷歌翻译