时间动作检测(TAD)旨在确定未修剪视频中每个动作实例的语义标签和边界。先前的方法通过复杂的管道来解决此任务。在本文中,我们提出了一个具有简单集的预测管道的端到端时间动作检测变压器(TADTR)。给定一组名为“动作查询”的可学习嵌入,Tadtr可以从每个查询的视频中自适应提取时间上下文,并直接预测动作实例。为了适应TAD的变压器,我们提出了三个改进,以提高其所在地意识。核心是一个时间可变形的注意模块,在视频中有选择地参加一组稀疏的密钥片段。片段的完善机制和动作回归头旨在完善预测实例的边界和信心。 TADTR需要比以前的检测器更低的计算成本,同时保留了出色的性能。作为一个独立的检测器,它在Thumos14(56.7%地图)和HACS段(32.09%地图)上实现了最先进的性能。结合一个额外的动作分类器,它在ActivityNet-1.3上获得了36.75%的地图。我们的代码可在\ url {https://github.com/xlliu7/tadtr}上获得。
translated by 谷歌翻译
这项工作旨在使用带有动作查询的编码器框架(类似于DETR)来推进时间动作检测(TAD),该框架在对象检测中表现出了巨大的成功。但是,如果直接应用于TAD,该框架遇到了几个问题:解码器中争论之间关系的探索不足,由于培训样本数量有限,分类培训不足以及推断时不可靠的分类得分。为此,我们首先提出了解码器中的关系注意机制,该机制根据其关系来指导查询之间的注意力。此外,我们提出了两项​​损失,以促进和稳定行动分类的培训。最后,我们建议在推理时预测每个动作查询的本地化质量,以区分高质量的查询。所提出的命名React的方法在Thumos14上实现了最新性能,其计算成本比以前的方法低得多。此外,还进行了广泛的消融研究,以验证每个提出的组件的有效性。该代码可在https://github.com/sssste/reaeact上获得。
translated by 谷歌翻译
Detection Transformer (DETR) and Deformable DETR have been proposed to eliminate the need for many hand-designed components in object detection while demonstrating good performance as previous complex hand-crafted detectors. However, their performance on Video Object Detection (VOD) has not been well explored. In this paper, we present TransVOD, the first end-to-end video object detection system based on spatial-temporal Transformer architectures. The first goal of this paper is to streamline the pipeline of VOD, effectively removing the need for many hand-crafted components for feature aggregation, e.g., optical flow model, relation networks. Besides, benefited from the object query design in DETR, our method does not need complicated post-processing methods such as Seq-NMS. In particular, we present a temporal Transformer to aggregate both the spatial object queries and the feature memories of each frame. Our temporal transformer consists of two components: Temporal Query Encoder (TQE) to fuse object queries, and Temporal Deformable Transformer Decoder (TDTD) to obtain current frame detection results. These designs boost the strong baseline deformable DETR by a significant margin (2 %-4 % mAP) on the ImageNet VID dataset. TransVOD yields comparable performances on the benchmark of ImageNet VID. Then, we present two improved versions of TransVOD including TransVOD++ and TransVOD Lite. The former fuses object-level information into object query via dynamic convolution while the latter models the entire video clips as the output to speed up the inference time. We give detailed analysis of all three models in the experiment part. In particular, our proposed TransVOD++ sets a new state-of-the-art record in terms of accuracy on ImageNet VID with 90.0 % mAP. Our proposed TransVOD Lite also achieves the best speed and accuracy trade-off with 83.7 % mAP while running at around 30 FPS on a single V100 GPU device. Code and models will be available for further research.
translated by 谷歌翻译
密集的视频字幕旨在使用视频的时间位置生成多个相关标题。以前的方法遵循复杂的“本地化 - 然后描述”方案,这些方案严重依赖于众多手工制作的组件。在本文中,通过将密集的标题产生作为设置预测任务,我们提出了一种具有并行解码(PDVC)的端到端密集视频字幕的简单且有效的框架。实际上,通过在变压器解码器顶部堆叠新提出的事件计数器,PDVC在对视频内容的整体理解下,将视频精确地将视频分成多个事件部分,这有效地提高了预测标题的相干性和可读性。与现有技术相比,PDVC具有多种吸引力优势:(1)不依赖于启发式非最大抑制或复发事件序列选择网络以除去冗余,PDVC直接产生具有适当尺寸的事件集; (2)与采用两级方案相比,我们并行地将事件查询的增强型表达送入本地化头和标题头,使这两个子任务深入相互关联,通过优化相互促进; (3)没有贝尔和吹口哨,对ActivityNet标题和YouScook2的广泛实验表明,PDVC能够产生高质量的标题结果,当其本地化准确性与它们相提并如此时,最先进的两级方法。代码可在https://github.com/ttengwang/pdvc提供。
translated by 谷歌翻译
DETR has been recently proposed to eliminate the need for many hand-designed components in object detection while demonstrating good performance. However, it suffers from slow convergence and limited feature spatial resolution, due to the limitation of Transformer attention modules in processing image feature maps. To mitigate these issues, we proposed Deformable DETR, whose attention modules only attend to a small set of key sampling points around a reference. Deformable DETR can achieve better performance than DETR (especially on small objects) with 10× less training epochs. Extensive experiments on the COCO benchmark demonstrate the effectiveness of our approach. Code is released at https:// github.com/fundamentalvision/Deformable-DETR.
translated by 谷歌翻译
基于自我注意力的变压器模型已显示出令人印象深刻的图像分类和对象检测结果,并且最近用于视频理解。受此成功的启发,我们研究了变压器网络在视频中的时间动作本地化的应用。为此,我们提出了ActionFormer,这是一个简单而强大的模型,可在不使用动作建议或依靠预定义的锚点窗口中识别其及时识别其类别并识别其类别。 ActionFormer将多尺度特征表示与局部自我发作相结合,并使用轻加权解码器对每个时刻进行分类并估算相应的动作边界。我们表明,这种精心策划的设计会在先前的工作中进行重大改进。如果没有铃铛和口哨声,ActionFormer在Thumos14上的TIOU = 0.5的地图达到了71.0%的地图,表现优于最佳先前模型的绝对百分比14.1。此外,ActionFormer在ActivityNet 1.3(平均地图36.6%)和Epic-Kitchens 100(+先前工作的平均地图+13.5%)上显示出很强的结果。我们的代码可从http://github.com/happyharrycn/actionformer_release获得。
translated by 谷歌翻译
时间动作本地化在视频分析中起着重要作用,该视频分析旨在将动作定位和分类在未修剪视频中。先前的方法通常可以预测单个时间尺度的特征空间上的动作。但是,低级量表的时间特征缺乏足够的语义来进行动作分类,而高级尺度则无法提供动作边界的丰富细节。为了解决这个问题,我们建议预测多个颞尺度特征空间的动作。具体而言,我们使用不同尺度的精致特征金字塔将语义从高级尺度传递到低级尺度。此外,为了建立整个视频的长时间尺度,我们使用时空变压器编码器来捕获视频帧的远程依赖性。然后,具有远距离依赖性的精制特征被送入分类器以进行粗糙的动作预测。最后,为了进一步提高预测准确性,我们建议使用框架级别的自我注意模块来完善每个动作实例的分类和边界。广泛的实验表明,所提出的方法可以超越Thumos14数据集上的最先进方法,并在ActivityNet1.3数据集上实现可比性的性能。与A2NET(tip20,avg \ {0.3:0.7 \}),sub-action(csvt2022,avg \ {0.1:0.5 \})和afsd(cvpr21,avg \ {0.3:0.7 \}) ,提出的方法分别可以提高12.6 \%,17.4 \%和2.2 \%
translated by 谷歌翻译
在这项工作中,我们呈现SEQFormer,这是一个令人沮丧的视频实例分段模型。 SEQFormer遵循Vision变换器的原理,该方法模型视频帧之间的实例关系。然而,我们观察到一个独立的实例查询足以捕获视频中的时间序列,但应该独立地使用每个帧进行注意力机制。为此,SEQFormer在每个帧中定位一个实例,并聚合时间信息以学习视频级实例的强大表示,其用于动态地预测每个帧上的掩模序列。实例跟踪自然地实现而不进行跟踪分支或后处理。在YouTube-VIS数据集上,SEQFormer使用Reset-50个骨干和49.0 AP实现47.4个AP,其中Reset-101骨干,没有响铃和吹口哨。此类成果分别显着超过了以前的最先进的性能4.6和4.4。此外,与最近提出的Swin变压器集成,SEQFormer可以实现59.3的高得多。我们希望SEQFormer可能是一个强大的基线,促进了视频实例分段中的未来研究,同时使用更强大,准确,整洁的模型来实现该字段。代码和预先训练的型号在https://github.com/wjf5203/seqformer上公开使用。
translated by 谷歌翻译
现有的时间动作检测(TAD)方法依赖于每个视频产生大量的建议。这导致由于提案生成和/或主张行动实例评估以及最终的高计算成本而导致复杂的模型设计。在这项工作中,我们首次提出了一个带有全局分割掩码(TAG)的无建议的时间动作检测模型。我们的核心想法是以完整的视频长度共同学习每个操作实例的全局细分面具。标签模型与基于常规建议的方法有显着不同,通过关注全球时间表示学习,直接在没有建议的情况下直接检测本地起点和终点的行动点。此外,通过对TAD进行整体建模,而不是在单个建议级别上进行本地建模,标签需要更简单的模型体系结构,计算成本较低。广泛的实验表明,尽管设计更简单,但标签的表现优于现有的TAD方法,在两个基准上实现了新的最新性能。重要的是,训练的速度更快约20倍,推理效率更高。我们的标签的Pytorch实现可在https://github.com/sauradip/tags上获得。
translated by 谷歌翻译
时间动作本地化旨在预测未修剪长视频中每个动作实例的边界和类别。基于锚或建议的大多数先前方法忽略了整个视频序列中的全局本地上下文相互作用。此外,他们的多阶段设计无法直接生成动作边界和类别。为了解决上述问题,本文提出了一种新颖的端到端模型,称为自适应感知变压器(简称apperformer)。具体而言,Adaperformer探索了双支球多头的自我发项机制。一个分支会照顾全球感知的关注,该注意力可以模拟整个视频序列并汇总全球相关环境。而其他分支集中于局部卷积转移,以通过我们的双向移动操作来汇总框架内和框架间信息。端到端性质在没有额外步骤的情况下产生视频动作的边界和类别。提供了广泛的实验以及消融研究,以揭示我们设计的有效性。我们的方法在Thumos14数据集上实现了最先进的准确性(根据map@0.5、42.6 \%map@0.7和62.7 \%map@avg),并在活动网络上获得竞争性能, -1.3数据集,平均地图为36.1 \%。代码和型号可在https://github.com/soupero/adaperformer上找到。
translated by 谷歌翻译
Temporal action detection (TAD) is extensively studied in the video understanding community by generally following the object detection pipeline in images. However, complex designs are not uncommon in TAD, such as two-stream feature extraction, multi-stage training, complex temporal modeling, and global context fusion. In this paper, we do not aim to introduce any novel technique for TAD. Instead, we study a simple, straightforward, yet must-known baseline given the current status of complex design and low detection efficiency in TAD. In our simple baseline (termed BasicTAD), we decompose the TAD pipeline into several essential components: data sampling, backbone design, neck construction, and detection head. We extensively investigate the existing techniques in each component for this baseline, and more importantly, perform end-to-end training over the entire pipeline thanks to the simplicity of design. As a result, this simple BasicTAD yields an astounding and real-time RGB-Only baseline very close to the state-of-the-art methods with two-stream inputs. In addition, we further improve the BasicTAD by preserving more temporal and spatial information in network representation (termed as PlusTAD). Empirical results demonstrate that our PlusTAD is very efficient and significantly outperforms the previous methods on the datasets of THUMOS14 and FineAction. Meanwhile, we also perform in-depth visualization and error analysis on our proposed method and try to provide more insights on the TAD problem. Our approach can serve as a strong baseline for future TAD research. The code and model will be released at https://github.com/MCG-NJU/BasicTAD.
translated by 谷歌翻译
已经发现,旨在在未修剪视频的开始和终点范围内发现的时间动作实例的时间动作提案生成可以在很大程度上受益于适当的时间和语义上下文的剥削。最新的努力致力于通过自我发项模块来考虑基于时间的环境和基于相似性的语义上下文。但是,他们仍然遭受混乱的背景信息和有限的上下文特征学习的困扰。在本文中,我们提出了一个基于金字塔区域的新型插槽注意(PRSLOT)模块来解决这些问题。我们的PRSLOT模块不使用相似性计算,而是直接以编码器方式来学习本地关系,并基于注意力输入功能(称为\ textit {slot}}的注意力输入功能,生成了局部区域的表示。具体而言,在输入段级级别上,PRSLOT模块将目标段作为\ textIt {query},其周围区域为\ textit {key},然后通过聚集每个\ textit {query-key}插槽来生成插槽表示。具有平行金字塔策略的本地摘要上下文。基于PRSLOT模块,我们提出了一种基于金字塔区域的新型插槽注意网络,称为PRSA-NET,以学习具有丰富的时间和语义上下文的统一视觉表示,以获得更好的建议生成。广泛的实验是在两个广泛采用的Thumos14和ActivityNet-1.3基准上进行的。我们的PRSA-NET优于其他最先进的方法。特别是,我们将AR@100从以前的最佳50.67%提高到56.12%,以生成提案,并在0.5 TIOU下将地图从51.9 \%\%提高到58.7 \%\%\%\%\%,以在Thumos14上进行动作检测。 \ textit {代码可在} \ url {https://github.com/handhand123/prsa-net}中获得
translated by 谷歌翻译
变压器是一种基于关注的编码器解码器架构,彻底改变了自然语言处理领域。灵感来自这一重大成就,最近在将变形式架构调整到计算机视觉(CV)领域的一些开创性作品,这已经证明了他们对各种简历任务的有效性。依靠竞争力的建模能力,与现代卷积神经网络相比在本文中,我们已经为三百不同的视觉变压器进行了全面的审查,用于三个基本的CV任务(分类,检测和分割),提出了根据其动机,结构和使用情况组织这些方法的分类。 。由于培训设置和面向任务的差异,我们还在不同的配置上进行了评估了这些方法,以便于易于和直观的比较而不是各种基准。此外,我们已经揭示了一系列必不可少的,但可能使变压器能够从众多架构中脱颖而出,例如松弛的高级语义嵌入,以弥合视觉和顺序变压器之间的差距。最后,提出了三个未来的未来研究方向进行进一步投资。
translated by 谷歌翻译
我们提出了块茎:一种简单的时空视频动作检测解决方案。与依赖于离线演员检测器或手工设计的演员位置假设的现有方法不同,我们建议通过同时执行动作定位和识别从单个表示来直接检测视频中的动作微管。块茎学习一组管芯查询,并利用微调模块来模拟视频剪辑的动态时空性质,其有效地加强了与在时空空间中的演员位置假设相比的模型容量。对于包含过渡状态或场景变更的视频,我们提出了一种上下文意识的分类头来利用短期和长期上下文来加强行动分类,以及用于检测精确的时间动作程度的动作开关回归头。块茎直接产生具有可变长度的动作管,甚至对长视频剪辑保持良好的结果。块茎在常用的动作检测数据集AVA,UCF101-24和JHMDB51-21上优于先前的最先进。
translated by 谷歌翻译
时间动作本地化(TAL)是识别视频中一组动作的任务,该任务涉及将开始和终点定位并对每个操作实例进行分类。现有方法通过使用预定义的锚窗或启发式自下而上的边界匹配策略来解决此任务,这些策略是推理时间的主要瓶颈。此外,主要的挑战是由于缺乏全球上下文信息而无法捕获远程动作。在本文中,我们介绍了一个无锚的框架,称为HTNET,该框架预测了一组<开始时间,结束时间,类,类>三胞胎,这些视频基于变压器体系结构。在预测粗边界之后,我们通过背景特征采样(BFS)模块和分层变压器对其进行完善,这使我们的模型能够汇总全局上下文信息,并有效利用视频中固有的语义关系。我们演示了我们的方法如何在两个TAL基准数据集上定位准确的动作实例并实现最先进的性能:Thumos14和ActivityNet 1.3。
translated by 谷歌翻译
speed among all existing VIS models, and achieves the best result among methods using single model on the YouTube-VIS dataset. For the first time, we demonstrate a much simpler and faster video instance segmentation framework built upon Transformers, achieving competitive accuracy. We hope that VisTR can motivate future research for more video understanding tasks.
translated by 谷歌翻译
在本文中,我们提出了简单的关注机制,我们称之为箱子。它可以实现网格特征之间的空间交互,从感兴趣的框中采样,并提高变压器的学习能力,以获得几个视觉任务。具体而言,我们呈现拳击手,短暂的框变压器,通过从输入特征映射上的参考窗口预测其转换来参加一组框。通过考虑其网格结构,拳击手通过考虑其网格结构来计算这些框的注意力。值得注意的是,Boxer-2D自然有关于其注意模块内容信息的框信息的原因,使其适用于端到端实例检测和分段任务。通过在盒注意模块中旋转的旋转的不变性,Boxer-3D能够从用于3D端到端对象检测的鸟瞰图平面产生识别信息。我们的实验表明,拟议的拳击手-2D在Coco检测中实现了更好的结果,并且在Coco实例分割上具有良好的和高度优化的掩模R-CNN可比性。 Boxer-3D已经为Waymo开放的车辆类别提供了令人信服的性能,而无需任何特定的类优化。代码将被释放。
translated by 谷歌翻译
基于查询的变压器在许多图像域任务中构建长期注意力方面表现出了巨大的潜力,但是由于点云数据的压倒性大小,在基于激光雷达的3D对象检测中很少考虑。在本文中,我们提出了CenterFormer,这是一个基于中心的变压器网络,用于3D对象检测。 CenterFormer首先使用中心热图在基于标准的Voxel点云编码器之上选择中心候选者。然后,它将中心候选者的功能用作变压器中的查询嵌入。为了进一步从多个帧中汇总功能,我们通过交叉注意设计一种方法来融合功能。最后,添加回归头以预测输出中心功能表示形式上的边界框。我们的设计降低了变压器结构的收敛难度和计算复杂性。结果表明,与无锚对象检测网络的强基线相比,有了显着改善。 CenterFormer在Waymo Open数据集上实现了单个模型的最新性能,验证集的MAPH为73.7%,测试集的MAPH上有75.6%的MAPH,大大优于所有先前发布的CNN和基于变压器的方法。我们的代码可在https://github.com/tusimple/centerformer上公开获取
translated by 谷歌翻译
暂时视频接地(TVG)旨在根据自然语言查询将时间段定位在未修饰的视频中。在这项工作中,我们提出了一个名为TVG探索和匹配的新范式,该范式无缝地统一了两种TVG方法:无提案和基于提案的方法;前者探索了直接查找细分市场的搜索空间,后者将预定义的提案与地面真相相匹配。为了实现这一目标,我们将TVG视为一个设定的预测问题,并设计了可端到端的可训练的语言视频变压器(LVTR),该视频变压器(LVTR)利用了丰富的上下文化和平行解码的建筑优势来设置预测。总体培训时间表与两次扮演不同角色的关键损失,即时间定位损失和设定指导损失的平衡。这两个损失允许每个建议可以回归目标细分并确定目标查询。更具体地说,LVTR首先探索搜索空间以使初始建议多样化,然后将建议与相应的目标匹配,以细粒度的方式对齐它们。探索和匹配方案成功地结合了两种互补方法的优势,而无需将先验知识(例如,非最大抑制)编码到TVG管道中。结果,LVTR在两个TVG基准(ActivityCaptions and Charades-sta)上设定了新的最新结果,其推理速度是两倍。代码可在https://github.com/sangminwoo/explore-and-match上找到。
translated by 谷歌翻译
时间动作检测旨在定位视频中的行动边界。基于边界匹配的当前方法枚举并计算生成提案的所有可能的边界匹配。然而,这些方法忽略了边界预测中的远程上下文聚集。同时,由于相邻匹配的类似语义,局部语义聚集的密集产生的匹配不能改善语义丰富和歧视。在本文中,我们提出了名为Dual Contence聚合网络(DCAN)的端到端提议生成方法以聚合两个级别的上下文,即边界级别和提议级别,用于产生高质量的动作提案,从而提高性能时间作用检测。具体而言,我们设计了多路径时间上下文聚合(MTCA),以实现边界级别的平滑上下文聚合和对边界的精确评估。对于匹配评估,粗细匹配(CFM)旨在聚合上下文,并将匹配的映射从粗内进行精细化。我们对ActivityNet V1.3和Thumos-14进行了广泛的实验。 DCAN在ActivityNet V1.3上获得35.39%的平均地图,在Thumos-14上达到地图54.14%,展示DCAN可以产生高质量的提案,实现最先进的性能。我们在https://github.com/cg1177/dcan发布代码。
translated by 谷歌翻译