基于查询的变压器在许多图像域任务中构建长期注意力方面表现出了巨大的潜力,但是由于点云数据的压倒性大小,在基于激光雷达的3D对象检测中很少考虑。在本文中,我们提出了CenterFormer,这是一个基于中心的变压器网络,用于3D对象检测。 CenterFormer首先使用中心热图在基于标准的Voxel点云编码器之上选择中心候选者。然后,它将中心候选者的功能用作变压器中的查询嵌入。为了进一步从多个帧中汇总功能,我们通过交叉注意设计一种方法来融合功能。最后,添加回归头以预测输出中心功能表示形式上的边界框。我们的设计降低了变压器结构的收敛难度和计算复杂性。结果表明,与无锚对象检测网络的强基线相比,有了显着改善。 CenterFormer在Waymo Open数据集上实现了单个模型的最新性能,验证集的MAPH为73.7%,测试集的MAPH上有75.6%的MAPH,大大优于所有先前发布的CNN和基于变压器的方法。我们的代码可在https://github.com/tusimple/centerformer上公开获取
translated by 谷歌翻译
实时和高性能3D对象检测对于自动驾驶至关重要。最近表现最佳的3D对象探测器主要依赖于基于点或基于3D Voxel的卷积,这两者在计算上均无效地部署。相比之下,基于支柱的方法仅使用2D卷积,从而消耗了较少的计算资源,但它们的检测准确性远远落后于基于体素的对应物。在本文中,通过检查基于支柱和体素的探测器之间的主要性能差距,我们开发了一个实时和高性能的柱子检测器,称为Pillarnet。提出的柱子由一个强大的编码网络组成,用于有效的支柱特征学习,用于空间语义特征融合的颈网和常用的检测头。仅使用2D卷积,Pillarnet具有可选的支柱尺寸的灵活性,并与经典的2D CNN骨架兼容,例如VGGNET和RESNET.ADITIONICLY,Pillarnet受益于我们设计的方向iOu decoupled iou Recressions you Recressions损失以及IOU Aware Pareace Predication Prediction Predictight offication Branch。大规模Nuscenes数据集和Waymo Open数据集的广泛实验结果表明,在有效性和效率方面,所提出的Pillarnet在最新的3D检测器上表现良好。源代码可在https://github.com/agent-sgs/pillarnet.git上找到。
translated by 谷歌翻译
在本文中,我们提出了简单的关注机制,我们称之为箱子。它可以实现网格特征之间的空间交互,从感兴趣的框中采样,并提高变压器的学习能力,以获得几个视觉任务。具体而言,我们呈现拳击手,短暂的框变压器,通过从输入特征映射上的参考窗口预测其转换来参加一组框。通过考虑其网格结构,拳击手通过考虑其网格结构来计算这些框的注意力。值得注意的是,Boxer-2D自然有关于其注意模块内容信息的框信息的原因,使其适用于端到端实例检测和分段任务。通过在盒注意模块中旋转的旋转的不变性,Boxer-3D能够从用于3D端到端对象检测的鸟瞰图平面产生识别信息。我们的实验表明,拟议的拳击手-2D在Coco检测中实现了更好的结果,并且在Coco实例分割上具有良好的和高度优化的掩模R-CNN可比性。 Boxer-3D已经为Waymo开放的车辆类别提供了令人信服的性能,而无需任何特定的类优化。代码将被释放。
translated by 谷歌翻译
Three-dimensional objects are commonly represented as 3D boxes in a point-cloud. This representation mimics the well-studied image-based 2D bounding-box detection but comes with additional challenges. Objects in a 3D world do not follow any particular orientation, and box-based detectors have difficulties enumerating all orientations or fitting an axis-aligned bounding box to rotated objects. In this paper, we instead propose to represent, detect, and track 3D objects as points. Our framework, CenterPoint, first detects centers of objects using a keypoint detector and regresses to other attributes, including 3D size, 3D orientation, and velocity. In a second stage, it refines these estimates using additional point features on the object. In CenterPoint, 3D object tracking simplifies to greedy closest-point matching. The resulting detection and tracking algorithm is simple, efficient, and effective. CenterPoint achieved state-of-theart performance on the nuScenes benchmark for both 3D detection and tracking, with 65.5 NDS and 63.8 AMOTA for a single model. On the Waymo Open Dataset, Center-Point outperforms all previous single model methods by a large margin and ranks first among all Lidar-only submissions. The code and pretrained models are available at https://github.com/tianweiy/CenterPoint.
translated by 谷歌翻译
Recently, Transformer has achieved great success in computer vision. However, it is constrained because the spatial and temporal complexity grows quadratically with the number of large points in 3D object detection applications. Previous point-wise methods are suffering from time consumption and limited receptive fields to capture information among points. In this paper, we propose a two-stage hyperbolic cosine transformer (ChTR3D) for 3D object detection from LiDAR point clouds. The proposed ChTR3D refines proposals by applying cosh-attention in linear computation complexity to encode rich contextual relationships among points. The cosh-attention module reduces the space and time complexity of the attention operation. The traditional softmax operation is replaced by non-negative ReLU activation and hyperbolic-cosine-based operator with re-weighting mechanism. Extensive experiments on the widely used KITTI dataset demonstrate that, compared with vanilla attention, the cosh-attention significantly improves the inference speed with competitive performance. Experiment results show that, among two-stage state-of-the-art methods using point-level features, the proposed ChTR3D is the fastest one.
translated by 谷歌翻译
使用点云的3D对象检测由于其在自动驾驶和机器人技术中的广泛应用而引起了越来越多的关注。但是,大多数现有的研究都集中在单点云框架上,而无需利用点云序列中的时间信息。在本文中,我们设计了Transpillars,这是一种基于变压器的新型特征聚合技术,可利用连续点云框架的时间特征用于多帧3D对象检测。从两个角度来看,转子汇总的时空点云特征。首先,它直接从多帧特征映射而不是汇总实例功能融合体素级特征,以保存实例详细信息,并使用上下文信息,这些信息对于准确的对象本地化至关重要。其次,它引入了分层的粗到精细策略,以逐步融合多尺度功能,以有效捕获移动对象的运动并指导精美特征的聚合。此外,引入了一系列可变形变压器,以提高跨帧功能匹配的有效性。广泛的实验表明,与现有的多帧检测方法相比,我们提议的转质质量可以达到最先进的性能。代码将发布。
translated by 谷歌翻译
由于其在各种领域的广泛应用,3D对象检测正在接受行业和学术界的增加。在本文中,我们提出了从点云的3D对象检测的基于角度基于卷曲区域的卷积神经网络(PV-RCNNS)。首先,我们提出了一种新颖的3D探测器,PV-RCNN,由两个步骤组成:Voxel-to-keyPoint场景编码和Keypoint-to-Grid ROI特征抽象。这两个步骤深入地将3D体素CNN与基于点的集合的集合进行了集成,以提取辨别特征。其次,我们提出了一个先进的框架,PV-RCNN ++,用于更高效和准确的3D对象检测。它由两个主要的改进组成:有效地生产更多代表性关键点的划分的提案中心策略,以及用于更好地聚合局部点特征的vectorpool聚合,具有更少的资源消耗。通过这两种策略,我们的PV-RCNN ++比PV-RCNN快2倍,同时还在具有150米* 150M检测范围内的大型Waymo Open DataSet上实现更好的性能。此外,我们提出的PV-RCNNS在Waymo Open DataSet和高竞争力的基蒂基准上实现最先进的3D检测性能。源代码可在https://github.com/open-mmlab/openpcdet上获得。
translated by 谷歌翻译
We present a novel and high-performance 3D object detection framework, named PointVoxel-RCNN (PV-RCNN), for accurate 3D object detection from point clouds. Our proposed method deeply integrates both 3D voxel Convolutional Neural Network (CNN) and PointNet-based set abstraction to learn more discriminative point cloud features. It takes advantages of efficient learning and high-quality proposals of the 3D voxel CNN and the flexible receptive fields of the PointNet-based networks. Specifically, the proposed framework summarizes the 3D scene with a 3D voxel CNN into a small set of keypoints via a novel voxel set abstraction module to save follow-up computations and also to encode representative scene features. Given the highquality 3D proposals generated by the voxel CNN, the RoIgrid pooling is proposed to abstract proposal-specific features from the keypoints to the RoI-grid points via keypoint set abstraction with multiple receptive fields. Compared with conventional pooling operations, the RoI-grid feature points encode much richer context information for accurately estimating object confidences and locations. Extensive experiments on both the KITTI dataset and the Waymo Open dataset show that our proposed PV-RCNN surpasses state-of-the-art 3D detection methods with remarkable margins by using only point clouds. Code is available at https://github.com/open-mmlab/OpenPCDet.
translated by 谷歌翻译
变压器在自然语言处理中的成功最近引起了计算机视觉领域的关注。由于能够学习长期依赖性,变压器已被用作广泛使用的卷积运算符的替代品。事实证明,这种替代者在许多任务中都取得了成功,其中几种最先进的方法依靠变压器来更好地学习。在计算机视觉中,3D字段还见证了使用变压器来增加3D卷积神经网络和多层感知器网络的增加。尽管许多调查都集中在视力中的变压器上,但由于与2D视觉相比,由于数据表示和处理的差异,3D视觉需要特别注意。在这项工作中,我们介绍了针对不同3D视觉任务的100多种变压器方法的系统和彻底审查,包括分类,细分,检测,完成,姿势估计等。我们在3D Vision中讨论了变形金刚的设计,该设计使其可以使用各种3D表示形式处理数据。对于每个应用程序,我们强调了基于变压器的方法的关键属性和贡献。为了评估这些方法的竞争力,我们将它们的性能与12个3D基准测试的常见非转化方法进行了比较。我们通过讨论3D视觉中变压器的不同开放方向和挑战来结束调查。除了提出的论文外,我们的目标是频繁更新最新的相关论文及其相应的实现:https://github.com/lahoud/3d-vision-transformers。
translated by 谷歌翻译
从点云的3D检测中有两条流:单级方法和两级方法。虽然前者更加计算高效,但后者通常提供更好的检测精度。通过仔细检查两级方法,我们发现如果设计,第一阶段可以产生准确的盒子回归。在这种情况下,第二阶段主要重新分配盒子,使得具有更好的本地化的盒子得到选择。从这个观察开始,我们设计了一个可以满足这些要求的单级锚定网络。该网络名为AFDETV2,通过在骨干网中包含一个自校准的卷积块,键盘辅助监控和多任务头中的IOU预测分支来扩展了先前的工作。结果,检测精度在单阶段中大大提升。为了评估我们的方法,我们在Waymo Open DataSet和Nuscenes DataSet上进行了广泛的实验。我们观察到我们的AFDETv2在这两个数据集上实现了最先进的结果,优于所有现有技术,包括单级和两级SE3D探测器。 AFDETv2在Waymo Open DataSet挑战的实时3D检测中获得了第1位的第1位,我们的模型AFDetv2基地的变体题为挑战赞助商的“最有效的模型”,呈现出卓越的计算效率。为了证明这种单级方法的一般性,我们还将其应用于两级网络的第一阶段。毫无例外,结果表明,利用加强的骨干和救护方法,不再需要第二阶段细化。
translated by 谷歌翻译
在鸟眼中学习强大的表现(BEV),以进行感知任务,这是趋势和吸引行业和学术界的广泛关注。大多数自动驾驶算法的常规方法在正面或透视视图中执行检测,细分,跟踪等。随着传感器配置变得越来越复杂,从不同的传感器中集成了多源信息,并在统一视图中代表功能至关重要。 BEV感知继承了几个优势,因为代表BEV中的周围场景是直观和融合友好的。对于BEV中的代表对象,对于随后的模块,如计划和/或控制是最可取的。 BEV感知的核心问题在于(a)如何通过从透视视图到BEV来通过视图转换来重建丢失的3D信息; (b)如何在BEV网格中获取地面真理注释; (c)如何制定管道以合并来自不同来源和视图的特征; (d)如何适应和概括算法作为传感器配置在不同情况下各不相同。在这项调查中,我们回顾了有关BEV感知的最新工作,并对不同解决方案进行了深入的分析。此外,还描述了该行业的BEV方法的几种系统设计。此外,我们推出了一套完整的实用指南,以提高BEV感知任务的性能,包括相机,激光雷达和融合输入。最后,我们指出了该领域的未来研究指示。我们希望该报告能阐明社区,并鼓励对BEV感知的更多研究。我们保留一个活跃的存储库来收集最新的工作,并在https://github.com/openperceptionx/bevperception-survey-recipe上提供一包技巧的工具箱。
translated by 谷歌翻译
具有多传感器的3D对象检测对于自主驾驶和机器人技术的准确可靠感知系统至关重要。现有的3D探测器通过采用两阶段范式来显着提高准确性,这仅依靠激光点云进行3D提案的细化。尽管令人印象深刻,但点云的稀疏性,尤其是对于遥远的点,使得仅激光雷达的完善模块难以准确识别和定位对象。要解决这个问题,我们提出了一种新颖的多模式两阶段方法FusionRcnn,有效,有效地融合了感兴趣区域(ROI)的点云和摄像头图像。 FusionRcnn自适应地整合了LiDAR的稀疏几何信息和统一注意机制中相机的密集纹理信息。具体而言,它首先利用RoiPooling获得具有统一大小的图像集,并通过在ROI提取步骤中的建议中采样原始点来获取点设置;然后利用模式内的自我注意力来增强域特异性特征,此后通过精心设计的跨注意事项融合了来自两种模态的信息。FusionRCNN从根本上是插件,并支持不同的单阶段方法与不同的单阶段方法。几乎没有建筑变化。对Kitti和Waymo基准测试的广泛实验表明,我们的方法显着提高了流行探测器的性能。可取,FusionRCNN在Waymo上的FusionRCNN显着提高了强大的第二基线,而Waymo上的MAP则超过6.14%,并且优于竞争两阶段方法的表现。代码将很快在https://github.com/xxlbigbrother/fusion-rcnn上发布。
translated by 谷歌翻译
3D object detection from LiDAR point cloud is a challenging problem in 3D scene understanding and has many practical applications. In this paper, we extend our preliminary work PointRCNN to a novel and strong point-cloud-based 3D object detection framework, the part-aware and aggregation neural network (Part-A 2 net). The whole framework consists of the part-aware stage and the part-aggregation stage. Firstly, the part-aware stage for the first time fully utilizes free-of-charge part supervisions derived from 3D ground-truth boxes to simultaneously predict high quality 3D proposals and accurate intra-object part locations. The predicted intra-object part locations within the same proposal are grouped by our new-designed RoI-aware point cloud pooling module, which results in an effective representation to encode the geometry-specific features of each 3D proposal. Then the part-aggregation stage learns to re-score the box and refine the box location by exploring the spatial relationship of the pooled intra-object part locations. Extensive experiments are conducted to demonstrate the performance improvements from each component of our proposed framework. Our Part-A 2 net outperforms all existing 3D detection methods and achieves new state-of-the-art on KITTI 3D object detection dataset by utilizing only the LiDAR point cloud data. Code is available at https://github.com/sshaoshuai/PointCloudDet3D.
translated by 谷歌翻译
准确可靠的3D检测对于包括自动驾驶车辆和服务机器人在内的许多应用至关重要。在本文中,我们提出了一个具有点云序列的3D时间对象检测的灵活且高性能的3D检测框架,称为MPPNET。我们提出了一个新颖的三级结构框架,其中包含多帧特征编码和相互作用的代理点,以实现更好的检测。这三个层次结构分别进行每个帧的特征编码,短片特征融合和整个序列特征聚合。为了使用合理的计算资源来处理长期序列云,提出了组内特征混合和组间特征的注意,以形成第二和第三个特征编码层次结构,这些层次结构均经常应用于聚集多框架轨迹特征。代理不仅可以充当每个帧的一致对象表示,而且还充当了方便框架之间特征交互的快递。大型Waymo打开数据集的实验表明,当应用于短(例如4框架)和长(例如16框架)点云序列时,我们的方法优于具有较大边缘的最先进方法。代码可在https://github.com/open-mmlab/openpcdet上找到。
translated by 谷歌翻译
随着LIDAR传感器在自动驾驶中的流行率,3D对象跟踪受到了越来越多的关注。在点云序列中,3D对象跟踪旨在预测给定对象模板中连续帧中对象的位置和方向。在变压器成功的驱动下,我们提出了点跟踪变压器(PTTR),它有效地预测了高质量的3D跟踪,借助变压器操作,以粗到1的方式导致。 PTTR由三个新型设计组成。 1)我们设计的关系意识采样代替随机抽样,以在亚采样过程中保留与给定模板相关的点。 2)我们提出了一个点关系变压器,以进行有效的特征聚合和模板和搜索区域之间的特征匹配。 3)基于粗糙跟踪结果,我们采用了一个新颖的预测改进模块,通过局部特征池获得最终的完善预测。此外,以捕获对象运动的鸟眼视图(BEV)的有利特性(BEV)的良好属性,我们进一步设计了一个名为PTTR ++的更高级的框架,该框架既包含了点的视图和BEV表示)产生高质量跟踪结果的影响。 PTTR ++实质上提高了PTTR顶部的跟踪性能,并具有低计算开销。多个数据集的广泛实验表明,我们提出的方法达到了卓越的3D跟踪准确性和效率。
translated by 谷歌翻译
3D对象检测通过将点云作为唯一的输入来取得了显着的进展。但是,点云通常遭受不完整的几何结构和缺乏语义信息,这使得检测器难以准确地对检测到的对象进行分类。在这项工作中,我们专注于如何有效利用来自图像的对象级信息来提高基于点的3D检测器的性能。我们提出DEMF,这是一种简单而有效的方法,将图像信息融合到点特征中。给定一组点特征和图像特征图,DEMF通过将3D点的投影2D位置作为参考来自适应地汇总图像特征。我们在挑战性的Sun RGB-D数据集上评估了我们的方法,从而提高了最新的结果(+2.1 map@0.25和+2.3map@0.5)。代码可从https://github.com/haoy945/demf获得。
translated by 谷歌翻译
基于激光雷达的3D对象检测,语义分割和全景分段通常在具有独特架构的专业网络中实现,这些网络很难相互适应。本文介绍了Lidarmultinet,这是一个基于激光雷达的多任务网络,该网络统一了这三个主要的激光感知任务。在其许多好处中,多任务网络可以通过在多个任务中分享权重和计算来降低总成本。但是,与独立组合的单任务模型相比,它通常表现不佳。拟议的Lidarmultinet旨在弥合多任务网络和多个单任务网络之间的性能差距。 Lidarmultinet的核心是一个强大的基于3D Voxel的编码器架构,具有全局上下文池(GCP)模块,从激光雷达框架中提取全局上下文特征。特定于任务的头部添加在网络之上,以执行三个激光雷达感知任务。只需添加新的任务特定的头部,可以在引入几乎没有额外成本的同时,就可以实现更多任务。还提出了第二阶段来完善第一阶段的分割并生成准确的全景分割结果。 Lidarmultinet在Waymo Open数据集和Nuscenes数据集上进行了广泛的测试,这首先证明了主要的激光雷达感知任务可以统一在单个强大的网络中,该网络是经过训练的端到端,并实现了最先进的性能。值得注意的是,Lidarmultinet在Waymo Open数据集3D语义分割挑战2022中达到了最高的MIOU和最佳准确性,对于测试集中的22个类中的大多数,仅使用LIDAR点作为输入。它还为Waymo 3D对象检测基准和三个Nuscenes基准测试的单个模型设置了新的最新模型。
translated by 谷歌翻译
3D视觉感知任务,包括基于多相机图像的3D检测和MAP分割,对于自主驾驶系统至关重要。在这项工作中,我们提出了一个称为BeVformer的新框架,该框架以时空变压器学习统一的BEV表示,以支持多个自主驾驶感知任务。简而言之,Bevormer通过通过预定义的网格形BEV查询与空间和时间空间进行交互来利用空间和时间信息。为了汇总空间信息,我们设计了空间交叉注意,每个BEV查询都从相机视图中从感兴趣的区域提取了空间特征。对于时间信息,我们提出暂时的自我注意力,以将历史bev信息偶尔融合。我们的方法在Nuscenes \ texttt {test} set上,以NDS度量为单位达到了新的最新56.9 \%,该设置比以前的最佳艺术高9.0分,并且与基于LIDAR的盆地的性能相当。我们进一步表明,BeVormer明显提高了速度估计的准确性和在低可见性条件下对象的回忆。该代码可在\ url {https://github.com/zhiqi-li/bevformer}中获得。
translated by 谷歌翻译
近年来,自主驾驶LIDAR数据的3D对象检测一直在迈出卓越的进展。在最先进的方法中,已经证明了将点云进行编码为鸟瞰图(BEV)是有效且有效的。与透视图不同,BEV在物体之间保留丰富的空间和距离信息;虽然在BEV中相同类型的更远物体不会较小,但它们包含稀疏点云特征。这一事实使用共享卷积神经网络削弱了BEV特征提取。为了解决这一挑战,我们提出了范围感知注意网络(RAANET),提取更强大的BEV功能并产生卓越的3D对象检测。范围感知的注意力(RAA)卷曲显着改善了近距离的特征提取。此外,我们提出了一种新的辅助损耗,用于密度估计,以进一步增强覆盖物体的Raanet的检测精度。值得注意的是,我们提出的RAA卷积轻量级,并兼容,以集成到用于BEV检测的任何CNN架构中。 Nuscenes DataSet上的广泛实验表明,我们的提出方法优于基于LIDAR的3D对象检测的最先进的方法,具有16 Hz的实时推断速度,为LITE版本为22 Hz。该代码在匿名GitHub存储库HTTPS://github.com/Anonymous0522 / ange上公开提供。
translated by 谷歌翻译
In this paper, we propose a robust 3D detector, named Cross Modal Transformer (CMT), for end-to-end 3D multi-modal detection. Without explicit view transformation, CMT takes the image and point clouds tokens as inputs and directly outputs accurate 3D bounding boxes. The spatial alignment of multi-modal tokens is performed implicitly, by encoding the 3D points into multi-modal features. The core design of CMT is quite simple while its performance is impressive. CMT obtains 73.0% NDS on nuScenes benchmark. Moreover, CMT has a strong robustness even if the LiDAR is missing. Code will be released at https://github.com/junjie18/CMT.
translated by 谷歌翻译