极化是横向波的独特特征,由Stokes参数表示。极化状态的分析可以揭示有关来源的宝贵信息。在本文中,我们提出了一个可分离的低级别四元素线性混合模型对极化信号:我们假设源因子矩阵的每一列等于极化数据矩阵的一列,并将相应的问题称为可分离的Quaternion矩阵分解(SQMF)。我们讨论了SQMF可以分解的矩阵的一些属性。为了确定季节空间中的源因子矩阵,我们提出了一种受连续投影算法启发的称为Quaternion连续投影算法(QSPA)的启发式算法。为了确保QSPA的有效性,为Quaternion矩阵提出了一个新的归一化操作员。我们使用块坐标下降算法来计算实际数字空间中的非负因子激活矩阵。我们在极化图像表示和光偏光成像的应用中测试我们的方法,以验证其有效性。
translated by 谷歌翻译
约束的张量和矩阵分子化模型允许从多道数据中提取可解释模式。因此,对于受约束的低秩近似度的可识别性特性和有效算法是如此重要的研究主题。这项工作涉及低秩近似的因子矩阵的列,以众所周知的和可能的过度顺序稀疏,该模型包括基于字典的低秩近似(DLRA)。虽然早期的贡献集中在候选列字典内的发现因子列,即一稀疏的近似值,这项工作是第一个以大于1的稀疏性解决DLRA。我建议专注于稀疏编码的子问题,在解决DLRA时出现的混合稀疏编码(MSC)以交替的优化策略在解决DLRA时出现。提供了基于稀疏编码启发式的几种算法(贪婪方法,凸起放松)以解决MSC。在模拟数据上评估这些启发式的性能。然后,我展示了如何基于套索来调整一个有效的MSC求解器,以计算高光谱图像处理和化学测量学的背景下的基于词典的基于矩阵分解和规范的多adic分解。这些实验表明,DLRA扩展了低秩近似的建模能力,有助于降低估计方差并提高估计因子的可识别性和可解释性。
translated by 谷歌翻译
深矩阵因子化(深MF)是最新的无监督数据挖掘技术,其灵感来自受约束的低级别近似值。他们旨在提取高维数据集中功能的复杂层次结构。文献中提出的大多数损失函数用于评估深MF模型的质量和基础优化框架不一致,因为在不同层上使用了不同的损失。在本文中,我们引入了深层MF的两个有意义的损失功能,并提出了一个通用框架来解决相应的优化问题。我们通过整合各种约束和正规化(例如稀疏性,非负和最小体积)来说明这种方法的有效性。这些模型已成功应用于合成数据和真实数据,即高光谱的不混合和提取面部特征。
translated by 谷歌翻译
在依赖添加剂线性组合的模型中,出现了多个右侧(MNNL)的非负平方问题。特别是,它们是大多数非负矩阵分解算法的核心,并且具有许多应用。已知非负约束自然有利于稀疏性,即几乎没有零条目的解决方案。但是,它通常可以进一步增强这种稀疏性很有用,因为它可以提高结果的解释性并有助于减少噪声,从而导致稀疏的MNNL问题。在本文中,与大多数实施稀疏柱或行的大多数作品相反,我们首先引入了稀疏MNNL的新颖配方,并具有矩阵的稀疏性约束。然后,我们提出了一种两步算法来解决这个问题。第一步将稀疏的MNNL划分为子问题,每列的原始问题一列。然后,它使用不同的算法来确切或大约为每个子问题产生一个帕累托正面,即产生一组代表重建误差和稀疏性之间不同权衡的解决方案。第二步选择了这些帕累托前部之间的解决方案,以构建一个稀疏约束矩阵,以最大程度地减少重建误差。我们对面部和高光谱图像进行实验,我们表明我们提出的两步方法比最新的稀疏编码启发式方法提供了更准确的结果。
translated by 谷歌翻译
非负矩阵分解(NMF)模型被广泛用于恢复线性混合的非负数据。当数据是由连续信号采样的数据时,NMF中的因素可能被限制为非负合理函数的样本,这些函数允许相当通用的模型。使用Rational功能(R-NMF)称之为NMF。我们首先表明,在温和的假设下,R-NMF与NMF不同,这在基本上是独特的分解,这在需要恢复地面实际因素(例如盲源分离问题)的应用中至关重要。然后,我们提出了求解R-NMF的不同方法:R-HANLS,R-ANLS和R-NLS方法。从我们的测试中,没有什么方法明显优于其他方法,并且在时间和准确性之间应进行权衡。确实,R-Hanls对于大型问题而言是快速准确的,而R-ANLS更准确,但在时间和内存中都需要更多的资源。 R-NLS非常准确,但仅针对小问题。此外,我们表明R-NMF在各种任务中的表现都优于NMF,包括恢复半合成连续信号,以及实际高光信号的分类问题。
translated by 谷歌翻译
给定非负矩阵分解,$ r $和一个分解等级,$ r $,精确的非负矩阵分解(确切的NMF)将$ r $分解为两个非负矩阵的产品,$ c $和$ r $列,例如$ r = cs^\ top $。文献中的一个中心研究主题是这种分解是独特/可识别的条件,直到琐碎的歧义。在本文中,我们关注部分可识别性,即$ c $和$ s $的列的独特性。我们从化学计量学文献的基于数据的唯一性(DBU)定理开始研究。 DBU定理分析了确切NMF的所有可行解决方案,并依赖于$ C $和$ S $的稀疏条件。我们提供了最近出版的DBU定理限制版本的数学严格定理,仅依靠简单的稀疏性和代数条件:它适用于特定的确切NMF解决方案(与所有可行解决方案相对),并允许我们保证部分单列的独特性,$ c $或$ s $。其次,基于对受限制的DBU定理的几何解释,我们获得了新的局部可识别性结果。我们证明它比受限的DBU定理强,因为使用了精确的NMF进行适当的预处理。这种几何解释还导致我们在$ r = 3 $的情况下取得了另一个部分可识别性结果。第三,我们展示了如何顺序使用部分可识别性结果来确保$ c $和$ s $的更多列的可识别性。我们在几个示例中说明了这些结果,其中包括化学计量学文献的一个示例。
translated by 谷歌翻译
Low-rank matrix approximations, such as the truncated singular value decomposition and the rank-revealing QR decomposition, play a central role in data analysis and scientific computing. This work surveys and extends recent research which demonstrates that randomization offers a powerful tool for performing low-rank matrix approximation. These techniques exploit modern computational architectures more fully than classical methods and open the possibility of dealing with truly massive data sets.This paper presents a modular framework for constructing randomized algorithms that compute partial matrix decompositions. These methods use random sampling to identify a subspace that captures most of the action of a matrix. The input matrix is then compressed-either explicitly or implicitly-to this subspace, and the reduced matrix is manipulated deterministically to obtain the desired low-rank factorization. In many cases, this approach beats its classical competitors in terms of accuracy, speed, and robustness. These claims are supported by extensive numerical experiments and a detailed error analysis.The specific benefits of randomized techniques depend on the computational environment. Consider the model problem of finding the k dominant components of the singular value decomposition of an m × n matrix. (i) For a dense input matrix, randomized algorithms require O(mn log(k)) floating-point operations (flops) in contrast with O(mnk) for classical algorithms. (ii) For a sparse input matrix, the flop count matches classical Krylov subspace methods, but the randomized approach is more robust and can easily be reorganized to exploit multi-processor architectures. (iii) For a matrix that is too large to fit in fast memory, the randomized techniques require only a constant number of passes over the data, as opposed to O(k) passes for classical algorithms. In fact, it is sometimes possible to perform matrix approximation with a single pass over the data.
translated by 谷歌翻译
在本文中,我们提出了一种用于HSI去噪的强大主成分分析的新型非耦合方法,其侧重于分别同时为低级和稀疏组分的等级和列方向稀疏性产生更准确的近似。特别是,新方法采用日志确定级别近似和新颖的$ \ ell_ {2,\ log} $常规,以便分别限制组件矩阵的本地低级或列明智地稀疏属性。对于$ \ ell_ {2,\ log} $ - 正常化的收缩问题,我们开发了一个高效的封闭式解决方案,该解决方案名为$ \ ell_ {2,\ log} $ - 收缩运算符。新的正则化和相应的操作员通常可以用于需要列明显稀疏性的其他问题。此外,我们在基于日志的非凸rpca模型中强加了空间光谱总变化正则化,这增强了从恢复的HSI中的空间和光谱视图中的全局转换平滑度和光谱一致性。关于模拟和实际HSIS的广泛实验证明了所提出的方法在去噪HSIS中的有效性。
translated by 谷歌翻译
在本文中,我们提出了一个新的低级矩阵分解模型,称为有界的单纯形成矩阵分解(BSSMF)。给定输入矩阵$ x $和一个分解等级$ r $,BSSMF寻找带有$ r $ lum $ $ columns的矩阵$ w $和a矩阵$ h $,带有$ r $行,以便$ x \ lot在$ w $的每一列中,都有边界,也就是说,它们属于给定的间隔,$ h $的列属于概率单纯词,即,$ h $是列随机。 BSSMF概括了非负矩阵分解(NMF)和单纯结构的矩阵分解(SSMF)。当输入矩阵$ x $的条目属于给定间隔时,BSSMF特别适合。例如,当$ x $的行代表图像时,或$ x $是一个额定矩阵,例如在Netflix和Movielens数据集中,其中$ x $的条目属于Interval $ [1,5] $。单纯结构的矩阵$ h $不仅导致易于理解的分解,从而提供了$ x $的列的软聚类,而且暗示着$ wh $的每个列的条目属于与$的列的相同间隔W $。在本文中,我们首先提出了BSSMF的快速算法,即使在$ x $中缺少数据的情况下。然后,我们为BSSMF提供可识别性条件,也就是说,我们提供了BSSMF承认独特分解的条件,直到微不足道的歧义。最后,我们说明了BSSMF对两个应用程序的有效性:在一组图像中提取特征,以及推荐系统的矩阵完成问题。
translated by 谷歌翻译
在本文中,我们引入了一种新算法,该算法基于原型分析,用于假设末日成员的线性混合,用于盲目的高光谱脉冲。原型分析是该任务的自然表述。该方法不需要存在纯像素(即包含单个材料的像素),而是将末端成员表示为原始高光谱图像中几个像素的凸组合。我们的方法利用了熵梯度下降策略,(i)比传统的原型分析算法为高光谱脉冲提供更好的解决方案,并且(ii)导致有效的GPU实现。由于运行我们算法的单个实例很快,我们还提出了一个结合机制以及适当的模型选择程序,该过程使我们的方法可鲁棒性到超参数选择,同时保持计算复杂性合理。通过使用六个标准的真实数据集,我们表明我们的方法的表现优于最先进的矩阵分解和最新的深度学习方法。我们还提供开源pytorch实施:https://github.com/inria-thoth/edaa。
translated by 谷歌翻译
Linear structural causal models (SCMs)-- in which each observed variable is generated by a subset of the other observed variables as well as a subset of the exogenous sources-- are pervasive in causal inference and casual discovery. However, for the task of causal discovery, existing work almost exclusively focus on the submodel where each observed variable is associated with a distinct source with non-zero variance. This results in the restriction that no observed variable can deterministically depend on other observed variables or latent confounders. In this paper, we extend the results on structure learning by focusing on a subclass of linear SCMs which do not have this property, i.e., models in which observed variables can be causally affected by any subset of the sources, and are allowed to be a deterministic function of other observed variables or latent confounders. This allows for a more realistic modeling of influence or information propagation in systems. We focus on the task of causal discovery form observational data generated from a member of this subclass. We derive a set of necessary and sufficient conditions for unique identifiability of the causal structure. To the best of our knowledge, this is the first work that gives identifiability results for causal discovery under both latent confounding and deterministic relationships. Further, we propose an algorithm for recovering the underlying causal structure when the aforementioned conditions are satisfied. We validate our theoretical results both on synthetic and real datasets.
translated by 谷歌翻译
我们使用张量奇异值分解(T-SVD)代数框架提出了一种新的快速流算法,用于抵抗缺失的低管级张量的缺失条目。我们展示T-SVD是三阶张量的研究型块术语分解的专业化,我们在该模型下呈现了一种算法,可以跟踪从不完全流2-D数据的可自由子模块。所提出的算法使用来自子空间的基层歧管的增量梯度下降的原理,以解决线性复杂度和时间样本的恒定存储器的张量完成问题。我们为我们的算法提供了局部预期的线性收敛结果。我们的经验结果在精确态度上具有竞争力,但在计算时间内比实际应用上的最先进的张量完成算法更快,以在有限的采样下恢复时间化疗和MRI数据。
translated by 谷歌翻译
本文介绍了针对非负矩阵分解的新的乘法更新,并使用$ \ beta $ -Divergence和两个因素之一的稀疏正则化(例如,激活矩阵)。众所周知,需要控制另一个因素(字典矩阵)的规范,以避免使用不良的公式。标准实践包括限制字典的列具有单位规范,这导致了非平凡的优化问题。我们的方法利用原始问题对等效规模不变的目标函数的优化进行了重新处理。从那里,我们得出了块状大量最小化算法,这些算法可为$ \ ell_ {1} $ - 正则化或更“激进的” log-regularization提供简单的乘法更新。与其他最先进的方法相反,我们的算法是通用的,因为它们可以应用于任何$ \ beta $ -Divergence(即任何$ \ beta $的任何值),并且它们具有融合保证。我们使用各种数据集报告了与现有的启发式和拉格朗日方法的数值比较:面部图像,音频谱图,高光谱数据和歌曲播放计数。我们表明,我们的方法获得了收敛时类似质量的溶液(相似的目标值),但CPU时间显着减少。
translated by 谷歌翻译
本文涉及低级矩阵恢复问题的$ \ ell_ {2,0} $ \ ell_ {2,0} $ - 正则化分解模型及其计算。引入了Qual $ \ ell_ {2,0} $ - 因子矩阵的规范,以促进因素和低级别解决方案的柱稀疏性。对于这种不透露的不连续优化问题,我们开发了一种具有外推的交替的多种化 - 最小化(AMM)方法,以及一个混合AMM,其中提出了一种主要的交替的近端方法,以寻找与较少的非零列和带外推的AMM的初始因子对。然后用于最小化平滑的非凸损失。我们为所提出的AMM方法提供全局收敛性分析,并使用非均匀采样方案将它们应用于矩阵完成问题。数值实验是用综合性和实际数据示例进行的,并且与核形态正则化分解模型的比较结果和MAX-NORM正则化凸模型显示柱$ \ ell_ {2,0} $ - 正则化分解模型具有优势在更短的时间内提供较低误差和排名的解决方案。
translated by 谷歌翻译
这项调查旨在提供线性模型及其背后的理论的介绍。我们的目标是对读者进行严格的介绍,并事先接触普通最小二乘。在机器学习中,输出通常是输入的非线性函数。深度学习甚至旨在找到需要大量计算的许多层的非线性依赖性。但是,这些算法中的大多数都基于简单的线性模型。然后,我们从不同视图中描述线性模型,并找到模型背后的属性和理论。线性模型是回归问题中的主要技术,其主要工具是最小平方近似,可最大程度地减少平方误差之和。当我们有兴趣找到回归函数时,这是一个自然的选择,该回归函数可以最大程度地减少相应的预期平方误差。这项调查主要是目的的摘要,即线性模型背后的重要理论的重要性,例如分布理论,最小方差估计器。我们首先从三种不同的角度描述了普通的最小二乘,我们会以随机噪声和高斯噪声干扰模型。通过高斯噪声,该模型产生了可能性,因此我们引入了最大似然估计器。它还通过这种高斯干扰发展了一些分布理论。最小二乘的分布理论将帮助我们回答各种问题并引入相关应用。然后,我们证明最小二乘是均值误差的最佳无偏线性模型,最重要的是,它实际上接近了理论上的极限。我们最终以贝叶斯方法及以后的线性模型结束。
translated by 谷歌翻译
在本文中,我们提出了一个算法框架,称为乘数的惯性交替方向方法(IADMM),用于求解与线性约束线性约束的一类非convex非conmooth多块复合优化问题。我们的框架采用了一般最小化 - 更大化(MM)原理来更新每个变量块,从而不仅统一了先前在MM步骤中使用特定替代功能的AMDM的收敛分析,还导致新的有效ADMM方案。据我们所知,在非convex非平滑设置中,ADMM与MM原理结合使用,以更新每个变量块,而ADMM与\ emph {Primal变量的惯性术语结合在一起}尚未在文献中研究。在标准假设下,我们证明了生成的迭代序列的后续收敛和全局收敛性。我们说明了IADMM对一类非凸低级别表示问题的有效性。
translated by 谷歌翻译
在本文中,我们提出{\ it \下划线{r} ecursive} {\ it \ usef \ undesline {i} mortance} {\ it \ it \ usew supsline {s} ketching} algorithM squares {\ it \下划线{o} ptimization}(risro)。 Risro的关键步骤是递归重要性草图,这是一个基于确定性设计的递归投影的新素描框架,它与文献中的随机素描\ Citep {Mahoney2011 randomized,Woodruff2014sketching}有很大不同。在这个新的素描框架下,可以重新解释文献中的几种现有算法,而Risro比它们具有明显的优势。 Risro易于实现,并在计算上有效,其中每次迭代中的核心过程是解决降低尺寸最小二乘问题的问题。我们在某些轻度条件下建立了Risro的局部二次线性和二次收敛速率。我们还发现了Risro与Riemannian Gauss-Newton算法在固定等级矩阵上的联系。在机器学习和统计数据中的两种应用中,RISRO的有效性得到了证明:低级别矩阵痕量回归和相位检索。仿真研究证明了Risro的出色数值性能。
translated by 谷歌翻译
社区检测和正交组同步是科学和工程中各种重要应用的基本问题。在这项工作中,我们考虑了社区检测和正交组同步的联合问题,旨在恢复社区并同时执行同步。为此,我们提出了一种简单的算法,该算法由频谱分解步骤组成,然后是彼此枢转的QR分解(CPQR)。所提出的算法与数据点数线性有效且缩放。我们还利用最近开发的“休闲一淘汰”技术来建立近乎最佳保证,以确切地恢复集群成员资格,并稳定地恢复正交变换。数值实验证明了我们算法的效率和功效,并确认了我们的理论表征。
translated by 谷歌翻译
To address the non-negativity dropout problem of quaternion models, a novel quasi non-negative quaternion matrix factorization (QNQMF) model is presented for color image processing. To implement QNQMF, the quaternion projected gradient algorithm and the quaternion alternating direction method of multipliers are proposed via formulating QNQMF as the non-convex constraint quaternion optimization problems. Some properties of the proposed algorithms are studied. The numerical experiments on the color image reconstruction show that these algorithms encoded on the quaternion perform better than these algorithms encoded on the red, green and blue channels. Furthermore, we apply the proposed algorithms to the color face recognition. Numerical results indicate that the accuracy rate of face recognition on the quaternion model is better than on the red, green and blue channels of color image as well as single channel of gray level images for the same data, when large facial expressions and shooting angle variations are presented.
translated by 谷歌翻译
Graph clustering is a fundamental problem in unsupervised learning, with numerous applications in computer science and in analysing real-world data. In many real-world applications, we find that the clusters have a significant high-level structure. This is often overlooked in the design and analysis of graph clustering algorithms which make strong simplifying assumptions about the structure of the graph. This thesis addresses the natural question of whether the structure of clusters can be learned efficiently and describes four new algorithmic results for learning such structure in graphs and hypergraphs. All of the presented theoretical results are extensively evaluated on both synthetic and real-word datasets of different domains, including image classification and segmentation, migration networks, co-authorship networks, and natural language processing. These experimental results demonstrate that the newly developed algorithms are practical, effective, and immediately applicable for learning the structure of clusters in real-world data.
translated by 谷歌翻译