In this paper, we train a semantic parser that scales up to Freebase. Instead of relying on annotated logical forms, which is especially expensive to obtain at large scale, we learn from question-answer pairs. The main challenge in this setting is narrowing down the huge number of possible logical predicates for a given question. We tackle this problem in two ways: First, we build a coarse mapping from phrases to predicates using a knowledge base and a large text corpus. Second, we use a bridging operation to generate additional predicates based on neighboring predicates. On the dataset of Cai and Yates (2013), despite not having annotated logical forms, our system outperforms their state-of-the-art parser. Additionally, we collected a more realistic and challenging dataset of question-answer pairs and improves over a natural baseline.
translated by 谷歌翻译
本文提出了一种基于答案设置编程(ASP)的方法,用于代表自然语言文本生成的知识。文本中的知识是使用Neo Davidsonian的形式主义建模的,然后将其表示为答案集计划。相关的致辞知识另外导入Wordnet等资源,并在ASP中表示。然后可以使用所产生的知识库来在ASP系统的帮助下执行推理。这种方法可以促进许多自然语言任务,如自动问题应答,文本摘要和自动化问题。基于ASP的技术表示,例如默认推理,分层知识组织,默认值等的首选项,用于模拟完成这些任务所需的致辞推理方法。在本文中,我们描述了我们开发的CaspR系统,以自动解决在给出英语文本时回答自然语言问题的任务。 CASPR可以被视为一个系统,通过“了解”文本并已在队列数据集上进行了测试,具有有希望的结果。
translated by 谷歌翻译
We present TriviaQA, a challenging reading comprehension dataset containing over 650K question-answer-evidence triples. TriviaQA includes 95K questionanswer pairs authored by trivia enthusiasts and independently gathered evidence documents, six per question on average, that provide high quality distant supervision for answering the questions. We show that, in comparison to other recently introduced large-scale datasets, TriviaQA (1) has relatively complex, compositional questions, (2) has considerable syntactic and lexical variability between questions and corresponding answer-evidence sentences, and (3) requires more cross sentence reasoning to find answers. We also present two baseline algorithms: a featurebased classifier and a state-of-the-art neural network, that performs well on SQuAD reading comprehension. Neither approach comes close to human performance (23% and 40% vs. 80%), suggesting that Trivi-aQA is a challenging testbed that is worth significant future study. 1
translated by 谷歌翻译
关于概念及其属性的常识知识(CSK)有助于AI应用程序。诸如ConceptNet之类的先前作品已经编译了大型CSK集合。但是,它们的表现力限制在主题性 - 预处理(SPO)的三联元中,对p和o的s和字符串的简单概念。与先前的作品相比,CSK断言具有精致的表现力和更好的精度和回忆。 Ascent ++通过用子组和方面捕获复合概念,以及用语义方面的主张来捕获复合概念。后者对于表达断言和进一步预选赛的时间和空间有效性至关重要。此外,Ascent ++将开放信息提取(OpenIE)与典型性和显着性分数的明智清洁和排名相结合。对于高覆盖范围,我们的方法挖掘到具有广泛的Web内容的大规模爬网C4中。通过人类判断的评估显示了上升++ Kb的卓越质量,以及对QA支持任务的外部评估强调了Ascent ++的好处。可以在https://ascentpp.mpi-inf.mpg.de/上访问Web界面,数据和代码。
translated by 谷歌翻译
知识基础问题回答(KBQA)旨在通过知识库(KB)回答问题。早期研究主要集中于回答有关KB的简单问题,并取得了巨大的成功。但是,他们在复杂问题上的表现远非令人满意。因此,近年来,研究人员提出了许多新颖的方法,研究了回答复杂问题的挑战。在这项调查中,我们回顾了KBQA的最新进展,重点是解决复杂问题,这些问题通常包含多个主题,表达复合关系或涉及数值操作。详细说明,我们从介绍复杂的KBQA任务和相关背景开始。然后,我们描述用于复杂KBQA任务的基准数据集,并介绍这些数据集的构建过程。接下来,我们提出两个复杂KBQA方法的主流类别,即基于语义解析的方法(基于SP)的方法和基于信息检索的方法(基于IR)。具体而言,我们通过流程设计说明了他们的程序,并讨论了它们的主要差异和相似性。之后,我们总结了这两类方法在回答复杂问题时会遇到的挑战,并解释了现有工作中使用的高级解决方案和技术。最后,我们结论并讨论了与复杂的KBQA有关的几个有希望的方向,以进行未来的研究。
translated by 谷歌翻译
开放信息提取是一个重要的NLP任务,它针对从非结构化文本中提取结构化信息的目标,而无需限制关系类型或文本域。该调查文件涵盖了2007年至2022年的开放信息提取技术,重点是以前的调查未涵盖的新模型。我们从信息角度来源提出了一种新的分类方法,以适应最近的OIE技术的开发。此外,我们根据任务设置以及当前流行的数据集和模型评估指标总结了三种主要方法。鉴于全面的审查,从数据集,信息来源,输出表格,方法和评估指标方面显示了几个未来的方向。
translated by 谷歌翻译
Clinical semantic parsing (SP) is an important step toward identifying the exact information need (as a machine-understandable logical form) from a natural language query aimed at retrieving information from electronic health records (EHRs). Current approaches to clinical SP are largely based on traditional machine learning and require hand-building a lexicon. The recent advancements in neural SP show a promise for building a robust and flexible semantic parser without much human effort. Thus, in this paper, we aim to systematically assess the performance of two such neural SP models for EHR question answering (QA). We found that the performance of these advanced neural models on two clinical SP datasets is promising given their ease of application and generalizability. Our error analysis surfaces the common types of errors made by these models and has the potential to inform future research into improving the performance of neural SP models for EHR QA.
translated by 谷歌翻译
自动问题应答(QA)系统的目的是以时间有效的方式向用户查询提供答案。通常在数据库(或知识库)或通常被称为语料库的文件集合中找到答案。在过去的几十年里,收购知识的扩散,因此生物医学领域的新科学文章一直是指数增长。因此,即使对于领域专家,也难以跟踪域中的所有信息。随着商业搜索引擎的改进,用户可以在某些情况下键入其查询并获得最相关的一小组文档,以及在某些情况下从文档中的相关片段。但是,手动查找所需信息或答案可能仍然令人疑惑和耗时。这需要开发高效的QA系统,该系统旨在为用户提供精确和精确的答案提供了生物医学领域的自然语言问题。在本文中,我们介绍了用于开发普通域QA系统的基本方法,然后彻底调查生物医学QA系统的不同方面,包括使用结构化数据库和文本集合的基准数据集和几种提出的方​​法。我们还探讨了当前系统的局限性,并探索潜在的途径以获得进一步的进步。
translated by 谷歌翻译
我们使用神经语义解析方法解决对大知识图表的弱监督会议问题的问题。我们介绍了一种新的逻辑表单(LF)语法,可以在图中模拟各种查询,同时仍然足够简单以有效地生成监督数据。我们的变换器的模型将类似于输入的JSON的结构,允许我们轻松地结合知识图形和会话环境。该结构化输入转换为嵌入列表,然后馈送到标准注意图层。我们验证了我们的方法,无论是在语法覆盖范围和LF执行准确性方面,在两个公开可用的数据集,CSQA和Chamquestions,都在Wikidata接地。在CSQA上,我们的方法将覆盖范围从80美元的价格增加到96.2 \%$ 75.6 \%$ 75.6 \%$ 75.6 \%$,关于以前的最先进的结果。在CuncQuestions上,我们对最先进的竞争结果实现了竞争力。
translated by 谷歌翻译
For natural language understanding (NLU) technology to be maximally useful, it must be able to process language in a way that is not exclusive to a single task, genre, or dataset. In pursuit of this objective, we introduce the General Language Understanding Evaluation (GLUE) benchmark, a collection of tools for evaluating the performance of models across a diverse set of existing NLU tasks. By including tasks with limited training data, GLUE is designed to favor and encourage models that share general linguistic knowledge across tasks. GLUE also includes a hand-crafted diagnostic test suite that enables detailed linguistic analysis of models. We evaluate baselines based on current methods for transfer and representation learning and find that multi-task training on all tasks performs better than training a separate model per task. However, the low absolute performance of our best model indicates the need for improved general NLU systems.
translated by 谷歌翻译
知识表示和推理(KRR)系统表示知识作为事实和规则的集合。像数据库一样,KRR系统包含有关工业企业,科学和业务等人类活动领域的信息。 KRR可以代表复杂的概念和关系,它们可以以复杂的方式查询和操纵信息。不幸的是,指定必要的知识需要大多数领域专家没有的技能,而专业知识工程师很难找到,因此KRR技术受到了阻碍。一种解决方案可能是从英语文本中提取知识,并且许多作品都尝试这样做(Openseame,Google的吊索等)。不幸的是,目前,从不受限制的自然语言中提取逻辑事实仍然是不准确的,无法用于推理,而限制语言语法(所谓的受控自然语言或CNL)对于用户来说很难学习和使用。然而,与其他方法相比,一些最近基于CNL的方法,例如知识创作逻辑机(KALM)的精度非常高,并且一个自然的问题是可以在多大程度上取消CNL限制。在本文中,我们通过将KALM框架移植到神经自然语言解析器Mstanza来解决这个问题。在这里,我们将注意力限制在创作事实和查询上,因此我们的重点是我们所说的事实英语陈述。在我们的后续工作中将考虑创作其他类型的知识,例如规则。事实证明,基于神经网络的解析器有自己的问题,并且他们犯的错误范围从言论的一部分标记到lemmatization到依赖性错误。我们介绍了许多解决这些问题并测试新系统KALMFL(即,事实语言的KALM)的技术,这些技术表明KALMFL的正确性超过95%。
translated by 谷歌翻译
问题回答模型努力推广到训练模式的新型组成,诸如更长的序列或更复杂的测试结构。目前的端到端模型学习扁平输入嵌入,可以丢失输入语法上下文。先前的方法通过学习置换不变模型来改善泛化,但这些方法不会扩展到更复杂的火车测试分裂。我们提出了接地的图形解码,一种通过与注意机制接地结构化预测来提高语言表示的组成概括的方法。接地使模型能够从输入中保留语法信息,从而显着提高复杂输入的泛化。通过预测包含查询条件的连词的结构化图,我们学习一个组不变的表示,而不会在目标域上做出假设。我们的模型显着优于现有的基础基础上的组成自由BASE问题(CFQ)数据集,这是一个有挑战性的基准,用于有问题的合成概括。此外,我们有效地解决了98%精度的MCD1分体式。
translated by 谷歌翻译
当一个神经语言模型(LM)适于执行新任务时,任务的哪些方面预测了模型的最终性能?在NLP中,LM概括到个别示例的系统特征很好,但LM对新任务的系统的系统性方面并不理解。我们使用500个程序生成的序列建模任务构建的新基准测试,展示了LM适应性的特性和限制的大规模实证研究。这些任务组合了语言处理的核心方面,包括词汇语义,序列处理,记忆,逻辑推理和世界知识。使用TaskBench500,我们评估了三个适应性的方面,发现:(1)适应程序在他们记忆小型数据集的能力中急剧差异; (2)在任务类型的子集中,适应程序表现出对复杂任务的组成适应性; (3)未能匹配培训标签分布,在预测个别标签的内在难度中解释了不匹配。我们的实验表明,可以系统地描述和理解新的任务,如新示例的泛化,以及讨论可以使用新基准研究的适应性的其他方面的结论。
translated by 谷歌翻译
关于概念及其属性的常识知识(CSK)对AI应用程序(例如强大的聊天机器人)有用。诸如ConceptNet,Tuplekb和其他人之类的先前作品汇编了大型CSK集合,但在其表现力上限制了主题性主体对象(SPO)三倍(SPO)三元组,其中s和p和Onolithic的简单概念是P和O。这些项目都优先考虑精确精度。或召回,但几乎不能调和这些互补目标。本文介绍了一种称为Ascent的方法,以自动建立一个大规模的CSK断言的知识库(KB),具有高级表现力,并且比先前的作品更好,并且具有更好的精度和回忆。通过捕获子组和方面的复合概念,以及通过语义方面的主张来捕获复合概念,超越了三倍。后者对于表达断言和进一步预选赛的时间和空间有效性很重要。 Ascent使用语言模型将开放信息提取与明智的清洁结合在一起。内在评估显示了上升KB的较高规模和质量,QA支持任务的外部评估强调了上升的好处。可以在https://ascent.mpi-inf.mpg.de/上找到Web界面,数据和代码。
translated by 谷歌翻译
键入的需要图试图从文本中学习谓词之间的零件关系,并将其建模为谓词节点之间的边缘。构造图形通常遭受严重的稀疏性和分布相似性的不可靠性。我们提出了一个两阶段的方法,即带有文本含义和传递性的元素图(EGT2)。EGT2通过识别由键入CCG比较谓词形成的模板句子之间可能的文本构成来学习本地的关系关系。基于生成的本地图,EGT2然后使用三个新型的软传递性约束来考虑构成结构中的逻辑传递性。基准数据集上的实验表明,EGT2可以很好地对需要图中的传递性进行模拟以减轻稀疏性问题,并导致对当前最新方法的显着改善。
translated by 谷歌翻译
Wikidata是一个经常更新,社区驱动和多语言知识图形。因此,Wikidata是实体联系的一个有吸引力的基础,这是最近发表论文的增加显而易见的。该调查侧重于四个主题:(1)存在哪些Wikidata实体链接数据集,它们是多么广泛使用,它们是如何构建的? (2)对实体联系数据集的设计进行Wikidata的特点,如果是的话,怎么样? (3)当前实体链接方法如何利用Wikidata的特定特征? (4)现有实体链接方法未开发哪种Wikidata特征?本次调查显示,当前的Wikidata特定实体链接数据集在其他知识图表中的方案中的注释方案中没有不同。因此,没有提升多语言和时间依赖数据集的可能性,是自然适合维基帽的数据集。此外,我们表明大多数实体链接方法使用Wikidata以与任何其他知识图相同的方式,因为任何其他知识图都缺少了利用Wikidata特定特征来提高质量的机会。几乎所有方法都使用标签等特定属性,有时是描述,而是忽略超关系结构等特征。因此,例如,通过包括超关系图嵌入或类型信息,仍有改进的余地。许多方法还包括来自维基百科的信息,这些信息很容易与Wikidata组合并提供有价值的文本信息,Wikidata缺乏。
translated by 谷歌翻译
We present the Stanford Question Answering Dataset (SQuAD), a new reading comprehension dataset consisting of 100,000+ questions posed by crowdworkers on a set of Wikipedia articles, where the answer to each question is a segment of text from the corresponding reading passage. We analyze the dataset to understand the types of reasoning required to answer the questions, leaning heavily on dependency and constituency trees. We build a strong logistic regression model, which achieves an F1 score of 51.0%, a significant improvement over a simple baseline (20%). However, human performance (86.8%) is much higher, indicating that the dataset presents a good challenge problem for future research. The dataset is freely available at https://stanford-qa.com.
translated by 谷歌翻译
随着未来以数据为中心的决策,对数据库的无缝访问至关重要。关于创建有效的文本到SQL(Text2SQL)模型以访问数据库的数据有广泛的研究。使用自然语言是可以通过有效访问数据库(尤其是对于非技术用户)来弥合数据和结果之间差距的最佳接口之一。它将打开门,并在精通技术技能或不太熟练的查询语言的用户中引起极大的兴趣。即使提出或研究了许多基于深度学习的算法,在现实工作场景中使用自然语言来解决数据查询问题仍然非常具有挑战性。原因是在不同的研究中使用不同的数据集,这带来了其局限性和假设。同时,我们确实缺乏对这些提议的模型及其对其训练的特定数据集的局限性的彻底理解。在本文中,我们试图介绍过去几年研究的24种神经网络模型的整体概述,包括其涉及卷积神经网络,经常性神经网络,指针网络,强化学习,生成模型等的架构。我们还概述11个数据集,这些数据集被广泛用于训练Text2SQL技术的模型。我们还讨论了无缝数据查询中文本2SQL技术的未来应用可能性。
translated by 谷歌翻译
数据增强是自然语言处理(NLP)模型的鲁棒性评估的重要组成部分,以及增强他们培训的数据的多样性。在本文中,我们呈现NL-Cogmenter,这是一种新的参与式Python的自然语言增强框架,它支持创建两个转换(对数据的修改)和过滤器(根据特定功能的数据拆分)。我们描述了框架和初始的117个变换和23个过滤器,用于各种自然语言任务。我们通过使用其几个转换来分析流行自然语言模型的鲁棒性来证明NL-Upmenter的功效。基础架构,Datacards和稳健性分析结果在NL-Augmenter存储库上公开可用(\ url {https://github.com/gem-benchmark/nl-augmenter})。
translated by 谷歌翻译
我们最近开始一个项目,为来自背景知识的后推推,以促进深入自然语言理解的制定更有效和有效的方式。单词的含义被认为是它增加了持续情况的实体,预测,预设和潜在推论。随着单词组成,情况下的最小模型演变为限制和直接推理。此时我们开发了我们的计算架构并在真实文本上实现了它。我们的重点是证明了我们设计的可行性。
translated by 谷歌翻译