有效地保留和编码结构功能从不规则和稀疏点点中的对象中的对象是对点云上3D对象检测的关键挑战。最近,变形金刚在许多2D甚至3D视觉任务上都表现出了有希望的表现。与固定和刚性卷积内核相比,变压器中的自发机制可以适应地排除无关或嘈杂点,因此适合保留不规则的LIDAR点云中的局部空间结构。但是,Transformer仅根据自我发项机制对点特征执行简单的总和,所有点具有相同的价值变换。这种各向同性操作缺乏捕获面向方向距离的局部结构的能力,这对于3D对象检测很重要。在这项工作中,我们提出了一个结构插入变压器(Seformer),它不仅可以将本地结构保存为传统变压器,而且还可以编码本地结构。与传统变压器中的自我发挥机制相比,Seformer基于与查询点的相对方向和距离学习了价值点的不同特征变换。然后,我们提出了一个基于Seformer的网络,用于高性能3D对象检测。广泛的实验表明,所提出的体系结构可以在Waymo Open Datatet上实现SOTA结果,这是自动驾驶的最大3D检测基准。具体而言,Seformer获得79.02%的地图,比现有作品高1.2%。我们将发布代码。
translated by 谷歌翻译
由于其在各种领域的广泛应用,3D对象检测正在接受行业和学术界的增加。在本文中,我们提出了从点云的3D对象检测的基于角度基于卷曲区域的卷积神经网络(PV-RCNNS)。首先,我们提出了一种新颖的3D探测器,PV-RCNN,由两个步骤组成:Voxel-to-keyPoint场景编码和Keypoint-to-Grid ROI特征抽象。这两个步骤深入地将3D体素CNN与基于点的集合的集合进行了集成,以提取辨别特征。其次,我们提出了一个先进的框架,PV-RCNN ++,用于更高效和准确的3D对象检测。它由两个主要的改进组成:有效地生产更多代表性关键点的划分的提案中心策略,以及用于更好地聚合局部点特征的vectorpool聚合,具有更少的资源消耗。通过这两种策略,我们的PV-RCNN ++比PV-RCNN快2倍,同时还在具有150米* 150M检测范围内的大型Waymo Open DataSet上实现更好的性能。此外,我们提出的PV-RCNNS在Waymo Open DataSet和高竞争力的基蒂基准上实现最先进的3D检测性能。源代码可在https://github.com/open-mmlab/openpcdet上获得。
translated by 谷歌翻译
基于查询的变压器在许多图像域任务中构建长期注意力方面表现出了巨大的潜力,但是由于点云数据的压倒性大小,在基于激光雷达的3D对象检测中很少考虑。在本文中,我们提出了CenterFormer,这是一个基于中心的变压器网络,用于3D对象检测。 CenterFormer首先使用中心热图在基于标准的Voxel点云编码器之上选择中心候选者。然后,它将中心候选者的功能用作变压器中的查询嵌入。为了进一步从多个帧中汇总功能,我们通过交叉注意设计一种方法来融合功能。最后,添加回归头以预测输出中心功能表示形式上的边界框。我们的设计降低了变压器结构的收敛难度和计算复杂性。结果表明,与无锚对象检测网络的强基线相比,有了显着改善。 CenterFormer在Waymo Open数据集上实现了单个模型的最新性能,验证集的MAPH为73.7%,测试集的MAPH上有75.6%的MAPH,大大优于所有先前发布的CNN和基于变压器的方法。我们的代码可在https://github.com/tusimple/centerformer上公开获取
translated by 谷歌翻译
We present a novel and high-performance 3D object detection framework, named PointVoxel-RCNN (PV-RCNN), for accurate 3D object detection from point clouds. Our proposed method deeply integrates both 3D voxel Convolutional Neural Network (CNN) and PointNet-based set abstraction to learn more discriminative point cloud features. It takes advantages of efficient learning and high-quality proposals of the 3D voxel CNN and the flexible receptive fields of the PointNet-based networks. Specifically, the proposed framework summarizes the 3D scene with a 3D voxel CNN into a small set of keypoints via a novel voxel set abstraction module to save follow-up computations and also to encode representative scene features. Given the highquality 3D proposals generated by the voxel CNN, the RoIgrid pooling is proposed to abstract proposal-specific features from the keypoints to the RoI-grid points via keypoint set abstraction with multiple receptive fields. Compared with conventional pooling operations, the RoI-grid feature points encode much richer context information for accurately estimating object confidences and locations. Extensive experiments on both the KITTI dataset and the Waymo Open dataset show that our proposed PV-RCNN surpasses state-of-the-art 3D detection methods with remarkable margins by using only point clouds. Code is available at https://github.com/open-mmlab/OpenPCDet.
translated by 谷歌翻译
在前景点(即物体)和室外激光雷达点云中的背景点之间通常存在巨大的失衡。它阻碍了尖端的探测器专注于提供信息的区域,以产生准确的3D对象检测结果。本文提出了一个新的对象检测网络,该对象检测网络通过称为PV-RCNN ++的语义点 - 素voxel特征相互作用。与大多数现有方法不同,PV-RCNN ++探索了语义信息,以增强对象检测的质量。首先,提出了一个语义分割模块,以保留更具歧视性的前景关键。这样的模块将指导我们的PV-RCNN ++在关键区域集成了更多与对象相关的点和体素特征。然后,为了使点和体素有效相互作用,我们利用基于曼哈顿距离的体素查询来快速采样关键点周围的体素特征。与球查询相比,这种体素查询将降低从O(N)到O(K)的时间复杂性。此外,为了避免仅学习本地特征,基于注意力的残留点网模块旨在扩展接收场,以将相邻的素素特征适应到关键点中。 Kitti数据集的广泛实验表明,PV-RCNN ++达到81.60 $ \%$,40.18 $ \%$,68.21 $ \%$ \%$ 3D地图在汽车,行人和骑自行车的人方面,可以在州,甚至可以在州立骑行者,甚至更好地绩效-艺术。
translated by 谷歌翻译
变压器在自然语言处理中的成功最近引起了计算机视觉领域的关注。由于能够学习长期依赖性,变压器已被用作广泛使用的卷积运算符的替代品。事实证明,这种替代者在许多任务中都取得了成功,其中几种最先进的方法依靠变压器来更好地学习。在计算机视觉中,3D字段还见证了使用变压器来增加3D卷积神经网络和多层感知器网络的增加。尽管许多调查都集中在视力中的变压器上,但由于与2D视觉相比,由于数据表示和处理的差异,3D视觉需要特别注意。在这项工作中,我们介绍了针对不同3D视觉任务的100多种变压器方法的系统和彻底审查,包括分类,细分,检测,完成,姿势估计等。我们在3D Vision中讨论了变形金刚的设计,该设计使其可以使用各种3D表示形式处理数据。对于每个应用程序,我们强调了基于变压器的方法的关键属性和贡献。为了评估这些方法的竞争力,我们将它们的性能与12个3D基准测试的常见非转化方法进行了比较。我们通过讨论3D视觉中变压器的不同开放方向和挑战来结束调查。除了提出的论文外,我们的目标是频繁更新最新的相关论文及其相应的实现:https://github.com/lahoud/3d-vision-transformers。
translated by 谷歌翻译
Point cloud learning has lately attracted increasing attention due to its wide applications in many areas, such as computer vision, autonomous driving, and robotics. As a dominating technique in AI, deep learning has been successfully used to solve various 2D vision problems. However, deep learning on point clouds is still in its infancy due to the unique challenges faced by the processing of point clouds with deep neural networks. Recently, deep learning on point clouds has become even thriving, with numerous methods being proposed to address different problems in this area. To stimulate future research, this paper presents a comprehensive review of recent progress in deep learning methods for point clouds. It covers three major tasks, including 3D shape classification, 3D object detection and tracking, and 3D point cloud segmentation. It also presents comparative results on several publicly available datasets, together with insightful observations and inspiring future research directions.
translated by 谷歌翻译
Recently, Transformer has achieved great success in computer vision. However, it is constrained because the spatial and temporal complexity grows quadratically with the number of large points in 3D object detection applications. Previous point-wise methods are suffering from time consumption and limited receptive fields to capture information among points. In this paper, we propose a two-stage hyperbolic cosine transformer (ChTR3D) for 3D object detection from LiDAR point clouds. The proposed ChTR3D refines proposals by applying cosh-attention in linear computation complexity to encode rich contextual relationships among points. The cosh-attention module reduces the space and time complexity of the attention operation. The traditional softmax operation is replaced by non-negative ReLU activation and hyperbolic-cosine-based operator with re-weighting mechanism. Extensive experiments on the widely used KITTI dataset demonstrate that, compared with vanilla attention, the cosh-attention significantly improves the inference speed with competitive performance. Experiment results show that, among two-stage state-of-the-art methods using point-level features, the proposed ChTR3D is the fastest one.
translated by 谷歌翻译
与2D对象检测不同,其中所有ROI功能来自网格像素,3D点云对象检测的ROI特征提取更加多样化。在本文中,我们首先比较和分析两个最先进模型PV-RCNN和Voxel-RCNN之间的结构和性能的差异。然后,我们发现两种模型之间的性能差距不来自点信息,而是结构信息。 Voxel特征包含更多结构信息,因为它们会进行量化而不是向下采样到点云,以便它们基本上可以包含整个点云的完整信息。体素特征中的强大结构信息使得探测器在我们的实验中具有更高的性能,即使体素功能没有准确的位置信息,也可以在我们的实验中进行更高的性能。然后,我们建议结构信息是3D对象检测的关键。基于上述结论,我们提出了一种自我关注的ROI特征提取器(SARFE),以增强从3D提案中提取的特征的结构信息。 SARFE是一种即插即用模块,可以轻松使用现有的3D探测器。我们的SARFE在Kitti DataSet和Waymo Open DataSet上进行评估。通过新引进的SARFE,我们通过在Kitti DataSet上的骑自行车者中的大型余量来提高最先进的3D探测器的性能,同时保持实时能力。
translated by 谷歌翻译
3D object detection received increasing attention in autonomous driving recently. Objects in 3D scenes are distributed with diverse orientations. Ordinary detectors do not explicitly model the variations of rotation and reflection transformations. Consequently, large networks and extensive data augmentation are required for robust detection. Recent equivariant networks explicitly model the transformation variations by applying shared networks on multiple transformed point clouds, showing great potential in object geometry modeling. However, it is difficult to apply such networks to 3D object detection in autonomous driving due to its large computation cost and slow reasoning speed. In this work, we present TED, an efficient Transformation-Equivariant 3D Detector to overcome the computation cost and speed issues. TED first applies a sparse convolution backbone to extract multi-channel transformation-equivariant voxel features; and then aligns and aggregates these equivariant features into lightweight and compact representations for high-performance 3D object detection. On the highly competitive KITTI 3D car detection leaderboard, TED ranked 1st among all submissions with competitive efficiency.
translated by 谷歌翻译
两阶段探测器在3D对象检测中已广受欢迎。大多数两阶段的3D检测器都使用网格点,体素电网或第二阶段的ROI特征提取的采样关键点。但是,这种方法在处理不均匀分布和稀疏的室外点方面效率低下。本文在三个方面解决了这个问题。 1)动态点聚集。我们建议补丁搜索以快速在本地区域中为每个3D提案搜索点。然后,将最远的体素采样采样用于均匀采样点。特别是,体素尺寸沿距离变化,以适应点的不均匀分布。 2)Ro-Graph Poling。我们在采样点上构建本地图,以通过迭代消息传递更好地模型上下文信息和地雷关系。 3)视觉功能增强。我们引入了一种简单而有效的融合策略,以补偿具有有限语义提示的稀疏激光雷达点。基于这些模块,我们将图形R-CNN构建为第二阶段,可以将其应用于现有的一阶段检测器,以始终如一地提高检测性能。广泛的实验表明,图R-CNN的表现优于最新的3D检测模型,而Kitti和Waymo Open DataSet的差距很大。我们在Kitti Bev汽车检测排行榜上排名第一。代码将在\ url {https://github.com/nightmare-n/graphrcnn}上找到。
translated by 谷歌翻译
实时和高性能3D对象检测对于自动驾驶至关重要。最近表现最佳的3D对象探测器主要依赖于基于点或基于3D Voxel的卷积,这两者在计算上均无效地部署。相比之下,基于支柱的方法仅使用2D卷积,从而消耗了较少的计算资源,但它们的检测准确性远远落后于基于体素的对应物。在本文中,通过检查基于支柱和体素的探测器之间的主要性能差距,我们开发了一个实时和高性能的柱子检测器,称为Pillarnet。提出的柱子由一个强大的编码网络组成,用于有效的支柱特征学习,用于空间语义特征融合的颈网和常用的检测头。仅使用2D卷积,Pillarnet具有可选的支柱尺寸的灵活性,并与经典的2D CNN骨架兼容,例如VGGNET和RESNET.ADITIONICLY,Pillarnet受益于我们设计的方向iOu decoupled iou Recressions you Recressions损失以及IOU Aware Pareace Predication Prediction Predictight offication Branch。大规模Nuscenes数据集和Waymo Open数据集的广泛实验结果表明,在有效性和效率方面,所提出的Pillarnet在最新的3D检测器上表现良好。源代码可在https://github.com/agent-sgs/pillarnet.git上找到。
translated by 谷歌翻译
由于基于相交的联盟(IOU)优化维持最终IOU预测度量和损失的一致性,因此它已被广泛用于单级2D对象检测器的回归和分类分支。最近,几种3D对象检测方法采用了基于IOU的优化,并用3D iou直接替换了2D iou。但是,由于复杂的实施和效率低下的向后操作,3D中的这种直接计算非常昂贵。此外,基于3D IOU的优化是优化的,因为它对旋转很敏感,因此可能导致训练不稳定性和检测性能恶化。在本文中,我们提出了一种新型的旋转旋转iou(RDIOU)方法,该方法可以减轻旋转敏感性问题,并在训练阶段与3D IOU相比产生更有效的优化目标。具体而言,我们的RDIOU通过将旋转变量解耦为独立术语,但保留3D iou的几何形状来简化回归参数的复杂相互作用。通过将RDIOU纳入回归和分类分支,鼓励网络学习更精确的边界框,并同时克服分类和回归之间的错位问题。基准Kitti和Waymo开放数据集的广泛实验验证我们的RDIOU方法可以为单阶段3D对象检测带来实质性改进。
translated by 谷歌翻译
随着LIDAR传感器在自动驾驶中的流行率,3D对象跟踪受到了越来越多的关注。在点云序列中,3D对象跟踪旨在预测给定对象模板中连续帧中对象的位置和方向。在变压器成功的驱动下,我们提出了点跟踪变压器(PTTR),它有效地预测了高质量的3D跟踪,借助变压器操作,以粗到1的方式导致。 PTTR由三个新型设计组成。 1)我们设计的关系意识采样代替随机抽样,以在亚采样过程中保留与给定模板相关的点。 2)我们提出了一个点关系变压器,以进行有效的特征聚合和模板和搜索区域之间的特征匹配。 3)基于粗糙跟踪结果,我们采用了一个新颖的预测改进模块,通过局部特征池获得最终的完善预测。此外,以捕获对象运动的鸟眼视图(BEV)的有利特性(BEV)的良好属性,我们进一步设计了一个名为PTTR ++的更高级的框架,该框架既包含了点的视图和BEV表示)产生高质量跟踪结果的影响。 PTTR ++实质上提高了PTTR顶部的跟踪性能,并具有低计算开销。多个数据集的广泛实验表明,我们提出的方法达到了卓越的3D跟踪准确性和效率。
translated by 谷歌翻译
它得到了很好的认识到,从深度感知的LIDAR点云和语义富有的立体图像中融合互补信息将有利于3D对象检测。然而,探索稀疏3D点和密集2D像素之间固有的不自然相互作用并不重要。为了简化这种困难,最近的建议通常将3D点投影到2D图像平面上以对图像数据进行采样,然后聚合点处的数据。然而,这种方法往往遭受点云和RGB图像的分辨率之间的不匹配,导致次优性能。具体地,作为多模态数据聚合位置的稀疏点导致高分辨率图像的严重信息丢失,这反过来破坏了多传感器融合的有效性。在本文中,我们呈现VPFNET - 一种新的架构,可以在“虚拟”点处巧妙地对齐和聚合点云和图像数据。特别地,它们的密度位于3D点和2D像素的密度之间,虚拟点可以很好地桥接两个传感器之间的分辨率间隙,从而保持更多信息以进行处理。此外,我们还研究了可以应用于点云和RGB图像的数据增强技术,因为数据增强对迄今为止对3D对象探测器的贡献不可忽略。我们对Kitti DataSet进行了广泛的实验,与最先进的方法相比,观察到了良好的性能。值得注意的是,我们的VPFNET在KITTI测试集上实现了83.21 \%中等3D AP和91.86 \%适度的BEV AP,自2021年5月21日起排名第一。网络设计也考虑了计算效率 - 我们可以实现FPS 15对单个NVIDIA RTX 2080TI GPU。该代码将用于复制和进一步调查。
translated by 谷歌翻译
近年来,由于深度学习技术的发展,LiDar Point Clouds的3D对象检测取得了长足的进步。尽管基于体素或基于点的方法在3D对象检测中很受欢迎,但它们通常涉及耗时的操作,例如有关体素的3D卷积或点之间的球查询,从而使所得网络不适合时间关键应用程序。另一方面,基于2D视图的方法具有较高的计算效率,而通常比基于体素或基于点的方法获得的性能低。在这项工作中,我们提出了一个基于实时视图的单阶段3D对象检测器,即CVFNET完成此任务。为了在苛刻的效率条件下加强跨视图的学习,我们的框架提取了不同视图的特征,并以有效的渐进式方式融合了它们。我们首先提出了一个新颖的点范围特征融合模块,该模块在多个阶段深入整合点和范围视图特征。然后,当将所获得的深点视图转换为鸟类视图时,特殊的切片柱旨在很好地维护3D几何形状。为了更好地平衡样品比率,提出了一个稀疏的柱子检测头,将检测集中在非空网上。我们对流行的Kitti和Nuscenes基准进行了实验,并以准确性和速度来实现最先进的性能。
translated by 谷歌翻译
从点云的3D检测中有两条流:单级方法和两级方法。虽然前者更加计算高效,但后者通常提供更好的检测精度。通过仔细检查两级方法,我们发现如果设计,第一阶段可以产生准确的盒子回归。在这种情况下,第二阶段主要重新分配盒子,使得具有更好的本地化的盒子得到选择。从这个观察开始,我们设计了一个可以满足这些要求的单级锚定网络。该网络名为AFDETV2,通过在骨干网中包含一个自校准的卷积块,键盘辅助监控和多任务头中的IOU预测分支来扩展了先前的工作。结果,检测精度在单阶段中大大提升。为了评估我们的方法,我们在Waymo Open DataSet和Nuscenes DataSet上进行了广泛的实验。我们观察到我们的AFDETv2在这两个数据集上实现了最先进的结果,优于所有现有技术,包括单级和两级SE3D探测器。 AFDETv2在Waymo Open DataSet挑战的实时3D检测中获得了第1位的第1位,我们的模型AFDetv2基地的变体题为挑战赞助商的“最有效的模型”,呈现出卓越的计算效率。为了证明这种单级方法的一般性,我们还将其应用于两级网络的第一阶段。毫无例外,结果表明,利用加强的骨干和救护方法,不再需要第二阶段细化。
translated by 谷歌翻译
从预期的观点(例如范围视图(RV)和Bird's-eye-view(BEV))进行了云云语义细分。不同的视图捕获了点云的不同信息,因此彼此互补。但是,最近基于投影的点云语义分割方法通常会利用一种香草后期的融合策略来预测不同观点,因此未能从表示学习过程中从几何学角度探索互补信息。在本文中,我们引入了一个几何流动网络(GFNET),以探索以融合方式对准不同视图之间的几何对应关系。具体而言,我们设计了一个新颖的几何流量模块(GFM),以双向对齐并根据端到端学习方案下的几何关系跨不同观点传播互补信息。我们对两个广泛使用的基准数据集(Semantickitti和Nuscenes)进行了广泛的实验,以证明我们的GFNET对基于项目的点云语义分割的有效性。具体而言,GFNET不仅显着提高了每个单独观点的性能,而且还可以在所有基于投影的模型中取得最新的结果。代码可在\ url {https://github.com/haibo-qiu/gfnet}中获得。
translated by 谷歌翻译
由于经过验证的2D检测技术的适用性,大多数当前点云检测器都广泛采用了鸟类视图(BEV)。但是,现有方法通过简单地沿高度尺寸折叠的体素或点特征来获得BEV特征,从而导致3D空间信息的重丢失。为了减轻信息丢失,我们提出了一个基于多级特征降低降低策略的新颖点云检测网络,称为MDRNET。在MDRNET中,空间感知的维度降低(SDR)旨在在体素至BEV特征转换过程中动态关注对象的宝贵部分。此外,提出了多级空间残差(MSR),以融合BEV特征图中的多级空间信息。关于Nuscenes的广泛实验表明,该提出的方法的表现优于最新方法。该代码将在出版时提供。
translated by 谷歌翻译
变压器一直是自然语言处理(NLP)和计算机视觉(CV)革命的核心。 NLP和CV的显着成功启发了探索变压器在点云处理中的使用。但是,变压器如何应对点云的不规则性和无序性质?变压器对于不同的3D表示(例如,基于点或体素)的合适性如何?各种3D处理任务的变压器有多大的能力?截至目前,仍然没有对这些问题的研究进行系统的调查。我们第一次为3D点云分析提供了越来越受欢迎的变压器的全面概述。我们首先介绍变压器体系结构的理论,并在2D/3D字段中审查其应用程序。然后,我们提出三种不同的分类法(即实现 - 数据表示和基于任务),它们可以从多个角度对当前的基于变压器的方法进行分类。此外,我们介绍了研究3D中自我注意机制的变异和改进的结果。为了证明变压器在点云分析中的优势,我们提供了基于各种变压器的分类,分割和对象检测方法的全面比较。最后,我们建议三个潜在的研究方向,为3D变压器的开发提供福利参考。
translated by 谷歌翻译