由于其样本效率,贝叶斯优化(BO)已成为处理昂贵的黑匣子优化问题的流行方法,如Quand参数优化(HPO)。最近的实证实验表明,HPO问题的损失景观往往比以前假设的良好良好,即,在最佳的单模和凸起的情况下,如果它可以专注于那些有前途的当地地区,BO框架可能会更有效。在本文中,我们提出了船舶,这是一种双阶段方法,它针对中型配置空间量身定制,因为许多HPO问题中的一个遇到。在第一阶段,我们建立一个可扩展的全球代理模型,随机森林来描述整体景观结构。此外,我们通过上级树结构上的自下而上的方法选择有希望的次区域。在第二阶段,利用该子区域中的本地模型来建议接下来进行评估。实证实验表明,鲍威能够利用典型的HPO问题的结构,并特别吻合来自合成功能和HPO的中型问题。
translated by 谷歌翻译
Modern deep learning methods are very sensitive to many hyperparameters, and, due to the long training times of state-of-the-art models, vanilla Bayesian hyperparameter optimization is typically computationally infeasible. On the other hand, bandit-based configuration evaluation approaches based on random search lack guidance and do not converge to the best configurations as quickly. Here, we propose to combine the benefits of both Bayesian optimization and banditbased methods, in order to achieve the best of both worlds: strong anytime performance and fast convergence to optimal configurations. We propose a new practical state-of-the-art hyperparameter optimization method, which consistently outperforms both Bayesian optimization and Hyperband on a wide range of problem types, including high-dimensional toy functions, support vector machines, feed-forward neural networks, Bayesian neural networks, deep reinforcement learning, and convolutional neural networks. Our method is robust and versatile, while at the same time being conceptually simple and easy to implement.
translated by 谷歌翻译
自动化封路计优化(HPO)已经获得了很大的普及,并且是大多数自动化机器学习框架的重要成分。然而,设计HPO算法的过程仍然是一个不系统和手动的过程:确定了现有工作的限制,提出的改进是 - 即使是专家知识的指导 - 仍然是一定任意的。这很少允许对哪些算法分量的驾驶性能进行全面了解,并且承载忽略良好算法设计选择的风险。我们提出了一个原理的方法来实现应用于多倍性HPO(MF-HPO)的自动基准驱动算法设计的原则方法:首先,我们正式化包括的MF-HPO候选的丰富空间,但不限于普通的HPO算法,然后呈现可配置的框架覆盖此空间。要自动和系统地查找最佳候选者,我们遵循通过优化方法,并通过贝叶斯优化搜索算法候选的空间。我们挑战是否必须通过执行消融分析来挑战所发现的设计选择或可以通过更加天真和更简单的设计。我们观察到使用相对简单的配置,在某些方式中比建立的方法更简单,只要某些关键配置参数具有正确的值,就可以很好地执行得很好。
translated by 谷歌翻译
大多数机器学习算法由一个或多个超参数配置,必须仔细选择并且通常会影响性能。为避免耗时和不可递销的手动试验和错误过程来查找性能良好的超参数配置,可以采用各种自动超参数优化(HPO)方法,例如,基于监督机器学习的重新采样误差估计。本文介绍了HPO后,本文审查了重要的HPO方法,如网格或随机搜索,进化算法,贝叶斯优化,超带和赛车。它给出了关于进行HPO的重要选择的实用建议,包括HPO算法本身,性能评估,如何将HPO与ML管道,运行时改进和并行化结合起来。这项工作伴随着附录,其中包含关于R和Python的特定软件包的信息,以及用于特定学习算法的信息和推荐的超参数搜索空间。我们还提供笔记本电脑,这些笔记本展示了这项工作的概念作为补充文件。
translated by 谷歌翻译
许多现实世界的科学和工业应用都需要优化多个竞争的黑盒目标。当目标是昂贵的评估时,多目标贝叶斯优化(BO)是一种流行的方法,因为其样品效率很高。但是,即使有了最近的方法学进步,大多数现有的多目标BO方法在具有超过几十个参数的搜索空间上的表现较差,并且依赖于随着观测值数量进行立方体扩展的全局替代模型。在这项工作中,我们提出了Morbo,这是高维搜索空间上多目标BO的可扩展方法。 Morbo通过使用协调策略并行在设计空间的多个局部区域中执行BO来确定全球最佳解决方案。我们表明,Morbo在几种高维综合问题和现实世界应用中的样品效率中的最新效率显着提高,包括光学显示设计问题和146和222参数的车辆设计问题。在这些问题上,如果现有的BO算法无法扩展和表现良好,Morbo为从业者提供了刻度级别的效率,则在当前方法上可以提高样本效率。
translated by 谷歌翻译
贝叶斯优化(BO)被广泛用于优化随机黑匣子功能。尽管大多数BO方法都集中在优化条件期望上,但许多应用程序都需要规避风险的策略,并且需要考虑分配尾巴的替代标准。在本文中,我们提出了针对贝叶斯分位数和预期回归的新变异模型,这些模型非常适合异形的噪声设置。我们的模型分别由有条件分位数(或期望)的两个潜在高斯过程和不对称可能性函数的比例参数组成。此外,我们提出了基于最大值熵搜索和汤普森采样的两种BO策略,这些策略是针对此类型号量身定制的,可以容纳大量点。与现有的BO进行规避风险优化的方法相反,我们的策略可以直接针对分位数和预期进行优化,而无需复制观测值或假设噪声的参数形式。如实验部分所示,所提出的方法清楚地表现出异质的非高斯案例中的最新状态。
translated by 谷歌翻译
自动化的HyperParameter优化(HPO)可以支持从业者在机器学习模型中获得峰值性能。然而,通常缺乏有价值的见解,以对不同的超参数对最终模型性能的影响。这种缺乏可解释性使得难以信任并理解自动化的HPO过程及其结果。我们建议使用可解释的机器学习(IML)从HPO中获得的实验数据与贝叶斯优化(BO)一起获得见解。 BO倾向于专注于具有潜在高性能配置的有前途的区域,从而诱导采样偏差。因此,许多IML技术,例如部分依赖曲线(PDP),承载产生偏置解释的风险。通过利用BO代理模型的后部不确定性,我们引入了具有估计置信带的PDP的变种。我们建议分区Quand参数空间以获得相关子区域的更自信和可靠的PDP。在一个实验研究中,我们为子区域内PDP的质量提高提供了定量证据。
translated by 谷歌翻译
信息理论的贝叶斯优化技术因其非洋流品质而变得越来越流行,以优化昂贵的黑盒功能。熵搜索和预测性熵搜索都考虑了输入空间中最佳的熵,而最新的最大值熵搜索则考虑了输出空间中最佳值的熵。我们提出了联合熵搜索(JES),这是一种新的信息理论采集函数,它考虑了全新的数量,即输入和输出空间上关节最佳概率密度的熵。为了结合此信息,我们考虑从幻想的最佳输入/输出对条件下的熵减少。最终的方法主要依赖于标准的GP机械,并去除通常与信息理论方法相关的复杂近似值。凭借最少的计算开销,JES展示了卓越的决策,并在各种任务中提供了信息理论方法的最新性能。作为具有出色结果的轻重量方法,JES为贝叶斯优化提供了新的首选功能。
translated by 谷歌翻译
Surrogate algorithms such as Bayesian optimisation are especially designed for black-box optimisation problems with expensive objectives, such as hyperparameter tuning or simulation-based optimisation. In the literature, these algorithms are usually evaluated with synthetic benchmarks which are well established but have no expensive objective, and only on one or two real-life applications which vary wildly between papers. There is a clear lack of standardisation when it comes to benchmarking surrogate algorithms on real-life, expensive, black-box objective functions. This makes it very difficult to draw conclusions on the effect of algorithmic contributions and to give substantial advice on which method to use when. A new benchmark library, EXPObench, provides first steps towards such a standardisation. The library is used to provide an extensive comparison of six different surrogate algorithms on four expensive optimisation problems from different real-life applications. This has led to new insights regarding the relative importance of exploration, the evaluation time of the objective, and the used model. We also provide rules of thumb for which surrogate algorithm to use in which situation. A further contribution is that we make the algorithms and benchmark problem instances publicly available, contributing to more uniform analysis of surrogate algorithms. Most importantly, we include the performance of the six algorithms on all evaluated problem instances. This results in a unique new dataset that lowers the bar for researching new methods as the number of expensive evaluations required for comparison is significantly reduced.
translated by 谷歌翻译
Bayesian Optimization is a useful tool for experiment design. Unfortunately, the classical, sequential setting of Bayesian Optimization does not translate well into laboratory experiments, for instance battery design, where measurements may come from different sources and their evaluations may require significant waiting times. Multi-fidelity Bayesian Optimization addresses the setting with measurements from different sources. Asynchronous batch Bayesian Optimization provides a framework to select new experiments before the results of the prior experiments are revealed. This paper proposes an algorithm combining multi-fidelity and asynchronous batch methods. We empirically study the algorithm behavior, and show it can outperform single-fidelity batch methods and multi-fidelity sequential methods. As an application, we consider designing electrode materials for optimal performance in pouch cells using experiments with coin cells to approximate battery performance.
translated by 谷歌翻译
寻找可调谐GPU内核的最佳参数配置是一种非普通的搜索空间练习,即使在自动化时也是如此。这在非凸搜索空间上造成了优化任务,使用昂贵的来评估具有未知衍生的函数。这些特征为贝叶斯优化做好了良好的候选人,以前尚未应用于这个问题。然而,贝叶斯优化对这个问题的应用是具有挑战性的。我们演示如何处理粗略的,离散的受限搜索空间,包含无效配置。我们介绍了一种新颖的上下文方差探索因子,以及具有改进的可扩展性的新采集功能,与知识的采集功能选择机制相结合。通过比较我们贝叶斯优化实现对各种测试用例的性能,以及核心调谐器中的现有搜索策略以及其他贝叶斯优化实现,我们证明我们的搜索策略概括了良好的良好,并始终如一地以广泛的保证金更优于其他搜索策略。
translated by 谷歌翻译
在本文中,我们描述了我们在QQ浏览器2021 AI算法竞争中解决自动超参数优化挑战的方法(ACM CIKM 2021 AnalyTiccup Track 2)。竞争组织者为黑匣子优化提供了匿名的现实工业任务和数据集。基于我们的开放式包装开放箱,我们采用贝叶斯优化框架进行配置采样和启发式早期停止策略。我们在初步和最终竞赛中赢得了0.938291和0.918753的初步和最终竞赛的第一名。
translated by 谷歌翻译
在广泛的应用中存在针刺问题,包括罕见疾病预测,生态资源管理,欺诈检测和材料特性优化。当相对于数据集大小的最佳条件存在极端不平衡时,就会出现针中的问题。例如,在开放式材料项目数据库中,在146K总材料中,只有0.82%的泊松比为负。但是,当前的最新优化算法并未设计出能够找到这些具有挑战性的多维针中问题的解决方案,从而导致与全球最佳或pige孔变为当地最低限度的缓慢收敛。在本文中,我们提出了一种基于缩放记忆的初始化算法,标题为Zombi,该算法构建了常规的贝叶斯优化原则,以在更少的时间和更少的实验中快速有效地优化针中的针刺问题,并通过解决常见的融合和常见的融合和较少的实验。鸽子问题。 Zombi从先前表现最佳的评估实验中积极提取知识,以在采样搜索范围内迭代放大到全局最佳的“针”,然后预留出低表现的历史实验的记忆,以加速计算时间。我们验证了该算法在两种现实世界中的5维针中的性能上的性能:发现辅助泊松比的发现和发现高热电图的优点材料的发现。与传统的贝叶斯优化相比,Zombi算法显示了400倍的计算时间加速度,并有效地发现了100个以下实验的材料,高达3倍的材料比当前最新算法发现的材料高度优化。
translated by 谷歌翻译
尽管自动超参数优化(HPO)的所有好处,但大多数现代的HPO算法本身都是黑盒子。这使得很难理解导致所选配置,减少对HPO的信任,从而阻碍其广泛采用的决策过程。在这里,我们研究了HPO与可解释的机器学习(IML)方法(例如部分依赖图)的组合。但是,如果将这种方法天真地应用于HPO过程的实验数据,则优化器的潜在采样偏差会扭曲解释。我们提出了一种修改的HPO方法,该方法有效地平衡了对全局最佳W.R.T.的搜索。预测性能以及通过耦合贝叶斯优化和贝叶斯算法执行的基础黑框函数的IML解释的可靠估计。在神经网络的合成目标和HPO的基准情况下,我们证明我们的方法返回对基础黑盒的更可靠的解释,而不会损失优化性能。
translated by 谷歌翻译
强化学习(RL)旨在通过与环境的互动来找到最佳政策。因此,学习复杂行为需要大量的样本,这在实践中可能是持久的。然而,而不是系统地推理和积极选择信息样本,用于本地搜索的政策梯度通常从随机扰动获得。这些随机样品产生高方差估计,因此在样本复杂性方面是次优。积极选择内容性样本是贝叶斯优化的核心,它构成了过去样本的目标的概率替代物,以推理信息的后来的随后。在本文中,我们建议加入两个世界。我们利用目标函数的概率模型及其梯度开发算法。基于该模型,该算法决定查询嘈杂的零顺序oracle以提高梯度估计。生成的算法是一种新型策略搜索方法,我们与现有的黑盒算法进行比较。比较揭示了改进的样本复杂性和对合成目标的广泛实证评估的差异降低。此外,我们突出了主动抽样对流行的RL基准测试的好处。
translated by 谷歌翻译
贝叶斯优化(BO)是一种用于计算昂贵的黑盒优化的方法,例如模拟器校准和深度学习方法的超参数优化。在BO中,采用动态更新的计算廉价替代模型来学习黑框函数的投入输出关系。该替代模型用于探索和利用输入空间的有前途的区域。多点BO方法采用单个经理/多个工人策略,以在较短的时间内实现高质量的解决方案。但是,多点生成方案中的计算开销是设计BO方法的主要瓶颈,可以扩展到数千名工人。我们提出了一种异步分配的BO(ADBO)方法,其中每个工人都会运行搜索,并异步地传达所有其他没有经理的工人的黑框评估的输入输出值。我们将方法扩展到4,096名工人,并证明了解决方案质量和更快的收敛质量。我们证明了我们从Exascale计算项目烛台基准调整神经网络超参数的方法的有效性。
translated by 谷歌翻译
贝叶斯优化(BO)已成为许多昂贵现实世界功能的全球优化的流行策略。与普遍认为BO适合优化黑框功能的信念相反,它实际上需要有关这些功能特征的域知识才能成功部署BO。这样的领域知识通常表现在高斯流程先验中,这些先验指定了有关功能的初始信念。但是,即使有专家知识,选择先验也不是一件容易的事。对于复杂的机器学习模型上的超参数调谐问题尤其如此,在这种模型中,调整目标的景观通常很难理解。我们寻求一种设定这些功能性先验的替代实践。特别是,我们考虑了从类似功能的数据中,使我们可以先验地进行更紧密的分布。从理论上讲,我们与预先训练的先验表示对BO的遗憾。为了验证我们在现实的模型培训设置中的方法,我们通过训练在流行图像和文本数据集上的数以万计的近状态模型配置来收集了大型多任务超参数调谐数据集,以及蛋白质序列数据集。我们的结果表明,平均而言,我们的方法能够比最佳竞争方法更有效地定位良好的超参数。
translated by 谷歌翻译
由于其数据效率,贝叶斯优化已经出现在昂贵的黑盒优化的最前沿。近年来,关于新贝叶斯优化算法及其应用的发展的研究激增。因此,本文试图对贝叶斯优化的最新进展进行全面和更新的调查,并确定有趣的开放问题。我们将贝叶斯优化的现有工作分为九个主要群体,并根据所提出的算法的动机和重点。对于每个类别,我们介绍了替代模型的构建和采集功能的适应的主要进步。最后,我们讨论了开放的问题,并提出了有希望的未来研究方向,尤其是在分布式和联合优化系统中的异质性,隐私保护和公平性方面。
translated by 谷歌翻译
Bayesian optimization (BO) is one of the most effective methods for closed-loop experimental design and black-box optimization. However, a key limitation of BO is that it is an inherently sequential algorithm (one experiment is proposed per round) and thus cannot directly exploit high-throughput (parallel) experiments. Diverse modifications to the BO framework have been proposed in the literature to enable exploitation of parallel experiments but such approaches are limited in the degree of parallelization that they can achieve and can lead to redundant experiments (thus wasting resources and potentially compromising performance). In this work, we present new parallel BO paradigms that exploit the structure of the system to partition the design space. Specifically, we propose an approach that partitions the design space by following the level sets of the performance function and an approach that exploits partially-separable structures of the performance function found. We conduct extensive numerical experiments using a reactor case study to benchmark the effectiveness of these approaches against a variety of state-of-the-art parallel algorithms reported in the literature. Our computational results show that our approaches significantly reduce the required search time and increase the probability of finding a global (rather than local) solution.
translated by 谷歌翻译
网络物理系统(CPSS)通常是复杂且至关重要的;因此,确保系统的要求,即规格,很难满足。基于仿真的CPS伪造是一种实用的测试方法,可用于通过仅要求模拟正在测试的系统来提高对系统正确性的信心。由于每个仿真通常在计算上进行密集,因此一个重要的步骤是减少伪造规范所需的仿真数量。我们研究贝叶斯优化(BO),一种样本效率的方法,它学习了一个替代模型,该模型描述了可能的输入信号的参数化与规范评估之间的关系。在本文中,我们改善了使用BO的伪造;首先采用两种突出的BO方法,一种适合本地替代模型,另一个适合当地的替代模型,利用了用户的先验知识。其次,本文介绍了伪造功能的采集函数的表述。基准评估显示,使用BO的局部替代模型来伪造以前难以伪造的基准示例的显着改善。在伪造过程中使用先验知识被证明是在模拟预算有限时特别重要的。对于某些基准问题,采集功能的选择清楚地影响了成功伪造所需的模拟数量。
translated by 谷歌翻译