学习算法的目标之一是补充和减轻人类决策者的负担。算法可以自行预测的专家延期设置,也可以将决定推迟到下游专家有助于实现这一目标。这种环境的一个基本方面是需要学习改善人类弱点的互补预测因子,而不是学习预测因素以优化平均错误。在这项工作中,我们提供了对专家延期中学习补充预测指标的好处的第一个理论分析。为了有效地学习此类预测因素,我们考虑了一个始终如一的替代损失功能的家族,以延期专家并分析其理论特性。最后,我们设计的主动学习方案需要最少的人类专家预测数据,以学习准确的延期系统。
translated by 谷歌翻译
公司跨行业对机器学习(ML)的快速传播采用了重大的监管挑战。一个这样的挑战就是可伸缩性:监管机构如何有效地审核这些ML模型,以确保它们是公平的?在本文中,我们启动基于查询的审计算法的研究,这些算法可以以查询有效的方式估算ML模型的人口统计学率。我们提出了一种最佳的确定性算法,以及具有可比保证的实用随机,甲骨文效率的算法。此外,我们进一步了解了随机活动公平估计算法的最佳查询复杂性。我们对主动公平估计的首次探索旨在将AI治理置于更坚定的理论基础上。
translated by 谷歌翻译
这项工作考虑了最佳手臂识别的选择性采样问题。给定一组潜在选项$ \ mathcal {z} \ subset \ mathbb {r} ^ d $,学习者旨在计算概率大于1- \ delta $,$ \ arg \ max_ {z \ mathcal { z}} z ^ {\ top} \ theta _ {\ ast} $ where $ \ theta _ {\ art} $未知。在每个时间步骤中,潜在的测量$ x_t \ in \ mathcal {x} \ subset \ mathbb {r} ^ d $被绘制的iid,学习者可以选择采取测量,在这种情况下,他们观察到嘈杂的测量$ x ^ {\ top} \ theta _ {\ ast} $,或弃权采取测量并等待可能更多的信息点到达流。因此,学习者在他们采取的标签样本数量之间面临的基本折衷,并且当他们收集足够的证据来宣布最好的手臂并停止抽样时。这项工作的主要结果精确地表征了标记的样本和停止时间之间的这种权衡,并提供了一种算法,几乎最佳地实现了给出所需停止时间的最小标签复杂性。此外,我们表明最佳决策规则具有基于决定点是否处于椭圆形的简单几何形式。最后,我们的框架足以捕获先前作品的二进制分类。
translated by 谷歌翻译
所有著名的机器学习算法构成了受监督和半监督的学习工作,只有在一个共同的假设下:培训和测试数据遵循相同的分布。当分布变化时,大多数统计模型必须从新收集的数据中重建,对于某些应用程序,这些数据可能是昂贵或无法获得的。因此,有必要开发方法,以减少在相关领域中可用的数据并在相似领域中进一步使用这些数据,从而减少需求和努力获得新的标签样品。这引起了一个新的机器学习框架,称为转移学习:一种受人类在跨任务中推断知识以更有效学习的知识能力的学习环境。尽管有大量不同的转移学习方案,但本调查的主要目的是在特定的,可以说是最受欢迎的转移学习中最受欢迎的次级领域,概述最先进的理论结果,称为域适应。在此子场中,假定数据分布在整个培训和测试数据中发生变化,而学习任务保持不变。我们提供了与域适应性问题有关的现有结果的首次最新描述,该结果涵盖了基于不同统计学习框架的学习界限。
translated by 谷歌翻译
各种应用程序中的一个关键问题是从公共源域进行适应的域,为此,相对较大的标记数据没有隐私限制,是一个人处置的私人目标域,为此提供了一个私人样本具有很少或没有标记的数据。在对源或目标数据没有隐私限制的回归问题中,基于几种理论保证的差异最小化算法被证明超过了许多其他适应性算法基础。在这种方法的基础上,我们设计了基于私有差异的算法,以适应带有公共标记数据到具有未标记的私人数据的目标域的源域。我们对私人算法的设计和分析非常关键地取决于我们证明的几个关键属性,以平滑地差异,例如其相对于$ \ ell_1 $ norm的平滑度和梯度的灵敏度。我们的解决方案基于Frank-Wolfe和Mirror-Despent算法的私人变体。我们表明,我们的适应算法受益于强有力的概括和隐私保证,并报告了证明其有效性的实验结果。
translated by 谷歌翻译
尽管学习已成为现代信息处理的核心组成部分,但现在有足够的证据表明它可以导致偏见,不安全和有偏见的系统。因此,对学习要求施加要求至关重要,尤其是在达到社会,工业和医疗领域的关键应用程序时。但是,大多数现代统计问题的非跨性别性只有通过限制引入而加剧。尽管通常可以使用经验风险最小化来学习良好的无约束解决方案,即使获得满足统计约束的模型也可能具有挑战性。更重要的是,一个好。在本文中,我们通过在经验双重领域中学习来克服这个问题,在经验的双重领域中,统计学上的统计学习问题变得不受限制和确定性。我们通过界定经验二元性差距来分析这种方法的概括特性 - 即,我们的近似,可拖动解决方案与原始(非凸)统计问题的解决方案之间的差异 - 并提供实用的约束学习算法。这些结果建立了与经典学习理论的约束,从而可以明确地在学习中使用约束。我们说明了这种理论和算法受到速率受限的学习应用,这是在公平和对抗性鲁棒性中产生的。
translated by 谷歌翻译
在随机上下文的强盗设置中,对遗憾最小化算法进行了广泛的研究,但是他们的实例最少的最佳武器识别对应物仍然很少研究。在这项工作中,我们将重点关注$(\ epsilon,\ delta)$ - $ \ textit {pac} $设置:给定策略类$ \ pi $,学习者的目标是返回策略的目标, $ \ pi \ in \ pi $的预期奖励在最佳政策的$ \ epsilon $之内,概率大于$ 1- \ delta $。我们表征了第一个$ \ textit {实例依赖性} $ PAC样品通过数量$ \ rho _ {\ pi} $的上下文匪徒的复杂性,并根据$ \ rho _ {\ pi} $提供匹配的上和下限不可知论和线性上下文最佳武器标识设置。我们表明,对于遗憾的最小化和实例依赖性PAC而言,无法同时最小化算法。我们的主要结果是一种新的实例 - 最佳和计算有效算法,该算法依赖于多项式呼叫对Argmax Oracle的调用。
translated by 谷歌翻译
近年来,已取得了巨大进展,以通过半监督学习(SSL)来纳入未标记的数据来克服效率低下的监督问题。大多数最先进的模型是基于对未标记的数据追求一致的模型预测的想法,该模型被称为输入噪声,这称为一致性正则化。尽管如此,对其成功的原因缺乏理论上的见解。为了弥合理论和实际结果之间的差距,我们在本文中提出了SSL的最坏情况一致性正则化技术。具体而言,我们首先提出了针对SSL的概括,该概括由分别在标记和未标记的训练数据上观察到的经验损失项组成。在这种界限的激励下,我们得出了一个SSL目标,该目标可最大程度地减少原始未标记的样本与其多重增强变体之间最大的不一致性。然后,我们提供了一种简单但有效的算法来解决提出的最小问题,从理论上证明它会收敛到固定点。五个流行基准数据集的实验验证了我们提出的方法的有效性。
translated by 谷歌翻译
主动学习可以减少执行假设测试所需的样本数量并估计模型的参数。在本文中,我们重新审视Chernoff的作品,所述工作描述了用于执行假设测试的渐近最佳算法。我们获得了对Chernoff的算法的新颖性复杂性,具有非渐近术语,其在固定置信水平处具有其性能。我们还开发了Chernoff采样的延伸,可用于估计各种模型的参数,并且我们在估计误差上获得非渐近绑定。我们将延长Chernoff采样延伸,积极学习神经网络模型,并估算实际数据线性和非线性回归问题中的参数,其中我们的方法有利地对最先进的方法执行。
translated by 谷歌翻译
我们调查与高斯的混合的数据分享共同但未知,潜在虐待协方差矩阵的数据。我们首先考虑具有两个等级大小的组件的高斯混合,并根据最大似然估计导出最大切割整数程序。当样品的数量在维度下线性增长时,我们证明其解决方案实现了最佳的错误分类率,直到对数因子。但是,解决最大切割问题似乎是在计算上棘手的。为了克服这一点,我们开发了一种高效的频谱算法,该算法达到最佳速率,但需要一种二次样本量。虽然这种样本复杂性比最大切割问题更差,但我们猜测没有多项式方法可以更好地执行。此外,我们收集了支持统计计算差距存在的数值和理论证据。最后,我们将MAX-CUT程序概括为$ k $ -means程序,该程序处理多组分混合物的可能性不平等。它享有相似的最优性保证,用于满足运输成本不平等的分布式的混合物,包括高斯和强烈的对数的分布。
translated by 谷歌翻译
积极的学习方法在减少学习所需的样本数量方面表现出了巨大的希望。随着自动化学习系统被采用到实时的现实世界决策管道中,越来越重要的是,这种算法的设计考虑到了安全性。在这项工作中,我们研究了在互动环境中学习最佳安全决定的复杂性。我们将这个问题减少到约束的线性匪徒问题,我们的目标是找到满足某些(未知)安全限制的最佳手臂。我们提出了一种基于自适应的实验性设计算法,在显示ARM的难度与次优的难度之间,我们表现出了有效的交易。据我们所知,我们的结果是具有安全限制的线性匪徒最佳武器识别。实际上,我们证明了这种方法在合成和现实世界数据集上的表现很好。
translated by 谷歌翻译
We study the fundamental question of how to define and measure the distance from calibration for probabilistic predictors. While the notion of perfect calibration is well-understood, there is no consensus on how to quantify the distance from perfect calibration. Numerous calibration measures have been proposed in the literature, but it is unclear how they compare to each other, and many popular measures such as Expected Calibration Error (ECE) fail to satisfy basic properties like continuity. We present a rigorous framework for analyzing calibration measures, inspired by the literature on property testing. We propose a ground-truth notion of distance from calibration: the $\ell_1$ distance to the nearest perfectly calibrated predictor. We define a consistent calibration measure as one that is a polynomial factor approximation to the this distance. Applying our framework, we identify three calibration measures that are consistent and can be estimated efficiently: smooth calibration, interval calibration, and Laplace kernel calibration. The former two give quadratic approximations to the ground truth distance, which we show is information-theoretically optimal. Our work thus establishes fundamental lower and upper bounds on measuring distance to calibration, and also provides theoretical justification for preferring certain metrics (like Laplace kernel calibration) in practice.
translated by 谷歌翻译
分发概括是将模型从实验室转移到现实世界时的关键挑战之一。现有努力主要侧重于源和目标域之间建立不变的功能。基于不变的功能,源域上的高性能分类可以在目标域上同样良好。换句话说,不变的功能是\ emph {transcorable}。然而,在实践中,没有完全可转换的功能,并且一些算法似乎学习比其他算法更学习“更可转移”的特征。我们如何理解和量化此类\ EMPH {可转录性}?在本文中,我们正式定义了一种可以量化和计算域泛化的可转换性。我们指出了与域之间的常见差异措施的差异和连接,例如总变化和Wassersein距离。然后,我们证明我们可以使用足够的样本估计我们的可转换性,并根据我们的可转移提供目标误差的新上限。经验上,我们评估现有算法学习的特征嵌入的可转换性,以获得域泛化。令人惊讶的是,我们发现许多算法并不完全学习可转让的功能,尽管很少有人仍然可以生存。鉴于此,我们提出了一种用于学习可转移功能的新算法,并在各种基准数据集中测试,包括RotationMnist,PACS,Office和Wilds-FMOW。实验结果表明,该算法在许多最先进的算法上实现了一致的改进,证实了我们的理论发现。
translated by 谷歌翻译
多集团不可知学习是一个正式的学习标准,涉及人口亚组内的预测因子的条件风险。标准解决了最近的实际问题,如亚组公平和隐藏分层。本文研究了对多组学习问题的解决方案的结构,为学习问题提供了简单和近最佳的算法。
translated by 谷歌翻译
预测到优化的框架在许多实际设置中都是基础:预测优化问题的未知参数,然后使用参数的预测值解决该问题。与参数的预测误差相反,在这种环境中的自然损失函数是考虑预测参数引起的决策成本。最近在Elmachtoub和Grigas(2022)中引入了此损失函数,并被称为智能预测 - 优化(SPO)损失。在这项工作中,我们试图提供有关在SPO损失的背景下,预测模型在训练数据中概括的预测模型的性能如何。由于SPO损失是非凸面和非lipschitz,因此不适用推导概括范围的标准结果。我们首先根据natarajan维度得出界限,在多面体可行区域中,在极端点数中最大程度地比对数扩展,但是,在一般凸的可行区域中,对决策维度具有线性依赖性。通过利用SPO损耗函数的结构和可行区域的关键特性,我们将其表示为强度属性,我们可以显着提高对决策和特征维度的依赖。我们的方法和分析依赖于围绕有问题的预测的利润,这些预测不会产生独特的最佳解决方案,然后在修改后的利润率SPO损失函数的背景下提供了概括界限,而SPO损失函数是Lipschitz的连续。最后,我们表征了强度特性,并表明可以有效地计算出具有显式极端表示的强凸体和多面体的修饰的SPO损耗。
translated by 谷歌翻译
事实证明,知识蒸馏是使用教师模型的预测来改善学生模型的一项有效技术。但是,最近的工作表明,在数据中的亚组中,平均效率的提高并不统一,尤其是在稀有亚组和类别上的准确性通常可能以准确性为代价。为了在可能遵循长尾分配的课程中保持强劲的表现,我们开发了蒸馏技术,这些技术是为了改善学生最差的级别表现而定制的。具体来说,我们为教师和学生介绍了不同组合的强大优化目标,并进一步允许在整体准确性和强大的最差目标之间进行任何权衡训练。我们从经验上表明,与其他基线方法相比,我们强大的蒸馏技术不仅可以实现更好的最差级别性能,而且还可以改善整体性能和最差的级别性能之间的权衡。从理论上讲,我们提供有关在目标培训健壮学生时使一名好老师的见解。
translated by 谷歌翻译
我们考虑在可实现的环境中进行交互式学习,并开发一般框架,以处理从最佳ARM识别到主动分类的问题。我们开始调查,即观察到可怕算法\ emph {无法实现可实现的设置中最佳最佳状态。因此,我们设计了新的计算有效的算法,可实现最可实现的设置,该算法与对数因子的最小限制相匹配,并且是通用的,适用于包括内核方法的各种功能类,H {\“O}偏置函数,以及凸起功能。我们的算法的样本复杂性可以在众所周知的数量中量化,如延长的教学尺寸和干草堆维度。然而,与直接基于这些组合量的算法不同,我们的算法是计算效率的。实现计算效率,我们的算法使用Monte Carlo“命令运行”算法来从版本空间中的样本,而不是明确地维护版本空间。我们的方法有两个关键优势。首先,简单,由两个统一,贪婪的算法组成。第二,我们的算法具有能够无缝地利用经常可用和在实践中有用的知识。此外为了我们的新理论结果,我们经验证明我们的算法与高斯过程UCB方法具有竞争力。
translated by 谷歌翻译
我们建议和分析一个强化学习原理,该原理仅在测试功能的用户定义空间沿使用它们的有效性来近似钟声方程。我们专注于使用功能近似的无模型离线RL应用程序,我们利用这一原理来得出置信区间以进行非政策评估,并在规定的策略类别中优化了对策略的优化。我们证明了关于我们的政策优化程序的甲骨文不平等,就任意比较策略的价值和不确定性之间的权衡而言。测试功能空间的不同选择使我们能够解决共同框架中的不同问题。我们表征了使用我们的程序从政策转移到政策数据的效率的丧失,并建立了与过去工作中研究的浓缩性系数的连接。我们深入研究了具有线性函数近似的方法的实施,即使贝尔曼关闭不结束,也可以通过多项式时间实现提供理论保证。
translated by 谷歌翻译
最近,提出了不变的风险最小化(IRM)作为解决分布外(OOD)概括的有前途的解决方案。但是,目前尚不清楚何时应优先于广泛的经验风险最小化(ERM)框架。在这项工作中,我们从样本复杂性的角度分析了这两个框架,从而迈出了一个坚定的一步,以回答这个重要问题。我们发现,根据数据生成机制的类型,这两种方法可能具有有限样本和渐近行为。例如,在协变量偏移设置中,我们看到两种方法不仅达到了相同的渐近解决方案,而且具有相似的有限样本行为,没有明显的赢家。但是,对于其他分布变化,例如涉及混杂因素或反毒物变量的变化,两种方法到达不同的渐近解决方案,在这些方法中,保证IRM可以接近有限样品状态中所需的OOD溶液,而ERM甚至偶然地偏向于渐近。我们进一步研究了不同因素(环境的数量,模型的复杂性和IRM惩罚权重)如何影响IRM的样本复杂性与其距离OOD溶液的距离有关
translated by 谷歌翻译
大多数现有的分类方法旨在最大限度地减少整体错误分类错误率,但是,在应用程序中,不同类型的错误可能具有不同的后果。要考虑到这种不对称问题,已经开发了两个流行的范式,即Neyman-Pearson(NP)范式和成本敏感(CS)范式。与CS范例相比,NP PARADIGM不需要提高成本规范。最先前的NP Paradigm的作品集中在二进制案例上。在这项工作中,我们通过将其连接到CS问题并提出两种算法来研究多级NP问题。我们将NP Oracle不等式扩展到二进制案例到多级案例的一致性,并显示我们的两种算法在某些条件下享受这些属性。模拟和实际数据研究表明了我们算法的有效性。据我们所知,这是第一个通过具有理论保证的成本敏感的学习技术来解决多级NP问题的工作。所提出的算法在CRAN上的R包“NPCS”中实现。
translated by 谷歌翻译