A simple and efficient randomized algorithm is presented for solving single-query path planning problems in high-dimensional configuration spaces. The method works by incrementally building two Rapidly-exploring Random Trees (RRTs) rooted at the start and the goal configurations. The trees each explore space around them and also advance towards each other through the use of a simple greedy heuristic. Although originally designed to plan motions for a human arm (modeled as a 7-DOF kinematic chain) for the automatic graphic animation of collision-free grasping and manipulation tasks, the algorithm has been successfully applied to a variety of path planning problems. Computed examples include generating collision-free motions for rigid objects in 2D and 3D, and collision-free manipulation motions for a 6-DOF PUMA arm in a 3D workspace. Some basic theoretical analysis is also presented.
translated by 谷歌翻译
双向运动规划与其单向对应物相比,平均地减少计划时间。在单次查询可行的运动规划中,使用双向搜索来查找连续运动计划需要前向和反向搜索树之间的边缘连接。这样的树木连接需要解决两点边值问题问题(BVP)。然而,两点BVP解决方案可能是困难的或不可能计算许多系统。我们提出了一种新的双向搜索策略,不需要解决两点BVP。反向树的成本信息而不是直接连接前向和反向树木,而是用作前向搜索的指导启发式。这使得前向搜索能够快速收敛到可行的解决方案而不解决两点BVP。我们提出了两个新的算法(GBRRT和GABRRT),使用此策略并使用多种动态系统和现实世界硬件实验运行多个软件模拟,以表明我们的算法表现出对现有最先进的方法进行的或更好在快速找到初始可行的解决方案时。
translated by 谷歌翻译
RRT*是一种有效的基于采样的运动计划算法。但是,在不利用可访问环境信息的优势的情况下,基于抽样的算法通常会导致抽样失败,产生无用的节点和/或失败探索狭窄的段落。对于本文,为了更好地利用环境信息并进一步提高搜索效率,我们提出了一种新颖的方法来改善RRT*通过1)量化邻居重新布线的障碍物配置的当地知识,以定向可见性,2)收集环境信息在搜索过程中,以及3)在第一个解决方案找到后,更改采样策略偏向近乎浮游节点。局部定向可见性(RRT* -LDV)提出的算法RRT*更好地利用了本地已知信息,并创新了加权采样策略。加速的RRT* -LDV在收敛率和找到狭窄段落的成功率上优于RRT*。还试验了高度自由度的场景。
translated by 谷歌翻译
工业机器人操纵器(例如柯机)的应用可能需要在具有静态和非静态障碍物组合的环境中有效的在线运动计划。当可用的计算时间受到限制或无法完全产生解决方案时,现有的通用计划方法通常会产生较差的质量解决方案。我们提出了一个新的运动计划框架,旨在在用户定义的任务空间中运行,而不是机器人的工作空间,该框架有意将工作空间一般性交易,以计划和执行时间效率。我们的框架自动构建在线查询的轨迹库,类似于利用离线计算的以前方法。重要的是,我们的方法还提供了轨迹长度上有限的次级优势保证。关键的想法是建立称为$ \ epsilon $ -Gromov-Hausdorff近似值的近似异构体,以便在任务空间附近的点也很接近配置空间。这些边界关系进一步意味着可以平稳地串联轨迹,这使我们的框架能够解决批次查询方案,目的是找到最小长度的轨迹顺序,这些轨迹访问一组无序的目标。我们通过几种运动型配置评估了模拟框架,包括安装在移动基础上的操纵器。结果表明,我们的方法可实现可行的实时应用,并为扩展其功能提供了有趣的机会。
translated by 谷歌翻译
基于采样的运动计划算法广泛用于机器人,因为它们在高维空间中非常有效。 However, the success rate and quality of the solutions are determined by an adequate selection of their parameters such as the distance between states, the local planner, and the sampling distribution.对于具有大配置空间或动态限制的机器人,选择这些参数是一个具有挑战性的任务。本文提出了一种通过调整采样方法来提高对基于最流行的采样的算法,快速探索随机树(RRT)的性能的方法。该想法是用自定义分布(C-PDF)替换均匀概率密度函数(U-PDF)从类似任务中的先前成功查询中获取。通过一些示例,我们的方法构建了一种自定义分布,允许RRT成长为承诺将导致解决方案的国家。我们在几种自主驾驶任务中测试了我们的方法,例如停车演习,障碍物间隙和狭窄的通道场景。结果表明,所提出的方法在成功率,树密度和计算时间方面优于原始的RRT和几种改进版本。另外,所提出的方法需要相对较小的示例,与需要大量示例的当前深度学习技术不同。
translated by 谷歌翻译
基于采样的运动计划者,例如RRT*和BIT*,当应用于运动动力运动计划时,依靠转向功能来生成连接采样状态的时间优势解决方案。实施精确的转向功能需要针对时间最佳控制问题的分析解决方案,或者非线性编程(NLP)求解器以鉴于系统的动力学方程式解决边界值问题。不幸的是,对于许多实际域而言,分析解决方案不可用,而NLP求解器在计算上非常昂贵,因此快速且最佳的动力动力运动计划仍然是一个开放的问题。我们通过引入状态监督转向功能(S3F)来提供解决此问题的解决方案,这是一种学习时间优势转向功能的新方法。 S3F能够比其NLP对应物更快地为转向函数的数量级产生近乎最佳的解决方案。在三个具有挑战性的机器人域进行的实验表明,使用S3F的RRT*在解决方案成本和运行时都显着优于最先进的计划方法。我们进一步提供了RRT*修改以使用S3F的概率完整性的证明。
translated by 谷歌翻译
我们提出了一种分层骨骼引导的运动计划算法来指导移动机器人。良好的骨骼绘制了C空间子空间的连接性,该子空间包含显着的自由度,并能够引导计划者快速找到所需的解决方案。但是,有时骨骼并不能密切代表自由的C空间,这通常会误导当前的骨架引导的计划者。分层骨骼指导的计划策略逐渐放松其对工作区骨骼的依赖,因为C空间被采样,从而逐渐返回了一条次优路径,该路径在标准骨架引导的算法中无法保证。与标准骨骼指导计划者和其他懒惰计划策略的实验比较显示了路线图施工时间的显着改善,同时保持混乱环境中多电量问题的路径质量。
translated by 谷歌翻译
在操纵器需要执行多个连续任务的环境中,对象操纵的行为将改变基础配置空间,从而影响所有后续任务。以前的免费配置现在可能被操纵的对象占据,并且以前占用的空间现在可能打开新的路径。我们提出了基于懒惰的Replanner(LTR*) - 一种新型的混合计划者,旨在继承现有的任何时间增量采样计划者的快速计划性质。同时,它允许后续任务通过懒惰的体验图来利用先前的经验。以懒惰的图结构总结了先前的经验,而Ltr*的表述是强大和有益的,无论工作空间的变化程度如何。与现有的基于路线图的规划人员相比,我们的混合方法在获得初始解决方案方面的速度更快,并且轨迹长度的成本较低。随后的任务可以利用懒惰的体验图来加快找到解决方案并利用优化图来最大程度地减少成本目标。我们提供概率完整性和几乎渐近的最佳保证的证明。在实验上,我们表明,在重复的选择任务中,LTR*在计划后续任务时的性能很高。
translated by 谷歌翻译
路径计划是设计机器人行为的关键算法方法。基于抽样的方法,例如快速探索随机树(RRT)或概率路线图,是针对路径计划问题的突出算法解决方案。尽管其指数收敛速率,RRT只能找到次优路径。另一方面,$ \ textrm {rrt}^*$是RRT广泛​​使用的扩展名,保证了寻找最佳路径的概率完整性,但在复杂环境中缓慢收敛而在实践中遭受痛苦。此外,现实世界中的机器人环境通常是可观察到的,或者描述的动力学不好,施放了$ \ textrm {rrt}^*$在复杂任务中的应用。本文研究了用于机器人路径计划的流行蒙特卡洛树搜索(MCTS)算法的新型算法公式。值得注意的是,我们通过分析和证明其指数的收敛速率(MCPP)在完全可观察到的马尔可夫决策过程(MDP)的一部分中,并证明其指数收敛速率,而另一部分则是其概率的完整性假设有限的距离可观察性(证明草图),在部分可观察的MDP(POMDP)中找到可行的路径。我们的算法贡献使我们能够采用最近提出的MCT的变体,并具有不同的勘探策略来进行机器人路径计划。我们在模拟的2D和3D环境中进行了7度自由度(DOF)操纵器以及现实世界机器人路径计划任务中的实验评估,证明了MCPP在POMDP任务中的优势。
translated by 谷歌翻译
长期以来,PATH规划一直是机器人技术的主要研究领域之一,PRM和RRT是最有效的计划者之一。尽管通常非常有效,但这些基于抽样的计划者在“狭窄通道”的重要情况下可能会变得昂贵。本文开发了专门为狭窄通道问题制定的路径规划范例。核心是基于计划由椭圆形工会封装的刚体机器人的计划。每个环境特征都使用具有$ \ Mathcal {C}^1 $边界的严格凸面来表示几何(例如,超级方面)。这样做的主要好处是,配置空间障碍物可以以封闭形式明确地进行参数化,从而可以使用先验知识来避免采样不可行的配置。然后,通过表征针对多个椭圆形的紧密体积,可以保证涉及旋转的机器人过渡无碰撞,而无需执行传统的碰撞检测。此外,通过与随机抽样策略结合使用,可以将提出的计划框架扩展到解决较高的维度问题,在该问题中,机器人具有移动的基础和铰接的附属物。基准结果表明,所提出的框架通常优于基于采样的计划者的计算时间和成功率,在找到单身机器人和具有较高维度配置空间的狭窄走廊的路径方面。使用建议的框架进行了物理实验,在人形机器人中进一步证明,该机器人在几个混乱的环境中行走,通道狭窄。
translated by 谷歌翻译
本文提出了一个基于抽样的运动计划者,该计划将RRT*(迅速探索随机树星)集成到预计运动原始图的数据库中,以减轻其计算负载,并允许在动态或部分已知的环境中进行运动计划。该数据库是通过在某些网格空间中考虑一组初始状态和最终状态对来构建的,并确定每个对与系统动力学和约束兼容的最佳轨迹,同时最小化成本。通过在网格状态空间中提取样品并在数据库中选择将其连接到现有节点的数据库中的最佳无障碍运动原始性,将节点逐渐添加到RRT*算法中可行轨迹树中的节点。如果可以通过无障碍的运动原始的原始较低的成本从新的采样状态达到一些节点,则树将重新接线。因此,运动计划的计算更密集的部分被移至数据库构建的初步离线阶段(以网格造成的某些性能退化为代价。可以对网格分辨率进行调整,以便在数据库的最优性和大小之间妥协。由于网格分辨率为零,并且采样状态的数量增长到无穷大,因此规划器被证明是渐近的最佳选择。
translated by 谷歌翻译
最佳路径规划是在优化目标的起始和目标之间找到有效状态的问题。知情路径规划算法顺序他们的搜索与特定于问题的知识表达为启发式,并且可以比未表现算法更有效的数量级。启发式最有效的是,当他们准确且计算地廉价才能评估,但这些通常是矛盾的特征。这使得适当的启发式难以满足许多问题。本文提出了两个几乎肯定的渐近最优采样的路径规划算法,以解决这一挑战,自适应地通知的树木(AIT *)和精力知的树木(EIT *)。这些算法使用非对称双向搜索,其中两个搜索彼此连续通知。这允许AIT *和EIT *通过同时计算和利用越来越准确,特定于问题的启发式来改善规划性能。 AIT *和EIT *相对于其他基于样品的算法的好处是在优化路径长度和障碍物间隙的十二个问题上进行了十二个问题。实验表明,AIT *和EIT *优于优化障碍物清除的问题的其他算法,其中先验成本启发式往往是无效的,并且仍然对最小化路径长度的问题表现良好,这种启发式通常是有效的。
translated by 谷歌翻译
我们考虑针对翻译不变的动态系统的时间 - 最佳运动计划,该属性适用于许多移动机器人,例如差速器,汽车,飞机和多旋转器。我们的关键见解是,当与优化共生时,我们可以将图形搜索算法扩展到连续情况。对于图形搜索,我们引入了不连续性的A*(DB-A*),这是A*算法的概括,该算法使用了基于采样计划者的概念和数据结构。 db-a*重复使用短轨迹,所谓的运动原语作为边缘,并允许在顶点处最大的用户指定的不连续性。这些轨迹是通过轨迹优化在局部修复的,这也提供了新的改进的运动原语。我们的新型动力学运动计划者KMP-DB-A*几乎具有渐近的最佳行为,并迅速计算了近乎最佳的解决方案。对于我们的经验验证,我们提供了第一个基准,该基准测试在不同设置中的多个动态系统上比较搜索,采样和基于优化的时间 - 最佳运动计划。与基线相比,KMP-DB-A*始终求解更多的问题实例,找到较低成本的初始解决方案并更快地收敛。
translated by 谷歌翻译
本文使用基于采样的方法RRT*研究,以在复杂的环境中重新配置一组连接的瓷砖,在这些环境中可能存在多个障碍。由于目标应用程序是自动构建离散的自动构建,因此使用移动机器人进行了蜂窝结构,因此有一些限制可以确定可以拾取哪些图块以及在重新配置期间可以将其放下的块。我们将我们的方法与两种算法作为全球和本地计划者进行了比较,并表明我们能够在具有不同程度的障碍空间的环境中使用合理数量的样本找到更有效的构建序列。
translated by 谷歌翻译
Tendon-driven robots, where one or more tendons under tension bend and manipulate a flexible backbone, can improve minimally invasive surgeries involving difficult-to-reach regions in the human body. Planning motions safely within constrained anatomical environments requires accuracy and efficiency in shape estimation and collision checking. Tendon robots that employ arbitrarily-routed tendons can achieve complex and interesting shapes, enabling them to travel to difficult-to-reach anatomical regions. Arbitrarily-routed tendon-driven robots have unintuitive nonlinear kinematics. Therefore, we envision clinicians leveraging an assistive interactive-rate motion planner to automatically generate collision-free trajectories to clinician-specified destinations during minimally-invasive surgical procedures. Standard motion-planning techniques cannot achieve interactive-rate motion planning with the current expensive tendon robot kinematic models. In this work, we present a 3-phase motion-planning system for arbitrarily-routed tendon-driven robots with a Precompute phase, a Load phase, and a Supervisory Control phase. Our system achieves an interactive rate by developing a fast kinematic model (over 1,000 times faster than current models), a fast voxel collision method (27.6 times faster than standard methods), and leveraging a precomputed roadmap of the entire robot workspace with pre-voxelized vertices and edges. In simulated experiments, we show that our motion-planning method achieves high tip-position accuracy and generates plans at 14.8 Hz on average in a segmented collapsed lung pleural space anatomical environment. Our results show that our method is 17,700 times faster than popular off-the-shelf motion planning algorithms with standard FK and collision detection approaches. Our open-source code is available online.
translated by 谷歌翻译
操纵可变形的线性对象(DLOS)在有障碍的受约束环境中实现所需的形状是一项有意义但具有挑战性的任务。对于这项高度约束的任务是必要的;但是,由于规划人员的可变形性质,计划人员需要的准确模型很难获得,并且不可避免的建模错误会显着影响计划结果,如果机器人只是以开环的方式执行计划的路径,则可能导致任务失败。在本文中,我们提出了一个粗到精细的框架,以结合全球计划和局部控制,以进行双臂操纵DLO,能够精确实现所需的配置并避免DLO,机器人和障碍物之间的潜在碰撞。具体而言,全球规划师是指一个简单而有效的DLO能量模型,并计算出一条粗略的途径,以确保任务的可行性。然后,本地控制器遵循该路径作为指导,并通过闭环反馈进一步塑造它,以补偿计划错误并保证任务的准确性。仿真和现实世界实验都表明,我们的框架可以在使用不精确的DLO模型的受约束环境中稳健地实现所需的DLO配置。仅通过计划或控制就无法可靠地实现。
translated by 谷歌翻译
本文通过结合可允许的知情采样和本地抽样(即,对当前解决方案的邻域进行采样)来改善基于RRT*的基于采样的路径计划者的性能。一种自适应策略来说明成本进展,可调节勘探(可接受的知情抽样)和剥削(本地抽样)之间的权衡。该论文证明所得算法在渐近上是最佳的。此外,在模拟和制造案例研究中,其收敛率优于最先进的路径计划者,例如知情RRT*。还发布了开源ROS兼容的实现。
translated by 谷歌翻译
多机器人运动计划(MRMP)是在运动动力学约束下针对在环境中作用的多个机器人的非缩进轨迹的基本问题。由于其复杂性,现有算法要么利用简化的假设或不完整。这项工作引入了基于动力学冲突的搜索(K-CB),这是一种分散的(分离)MRMP算法,是一般,可扩展性和概率完成的。该算法从成功的解决方案到MRMP的离散类似物(被称为多试路径查找(MAPF))具有灵感。具体来说,我们将基于冲突的搜索(CBS)(一种流行的分散MAPF算法)调整为MRMP设置。这种适应的新颖性是我们直接在连续领域工作,而无需离散化。特别是,动力动力学的约束在本地进行治疗。 K-CBS计划使用低级规划师分别为每个机器人计划,并通过定义单个机器人的约束来解决机器人之间的冲突树以解决机器人之间的碰撞。低水平的计划者可以是用于运动动力学机器人的任何基于采样的树搜索算法,从而将单个机器人的现有计划者提升为多机器人设置。我们表明,K-CBS继承了低级计划者的(概率)完整性。我们说明了在几个案例研究和基准测试中K-CB的一般性和性能。
translated by 谷歌翻译
在本文中,我们通过概率保证解决了基于采样的运动计划和测量不确定性的问题。我们概括了基于基于树的基于树木的运动计划算法,以确定性系统并提出信念-USHAMCAL {a} $,该框架将任何基于动力学的树的计划者扩展到线性(或可线化)系统的信念空间。我们为信仰空间介绍了适当的抽样技术和距离指标,以保留基础规划师的概率完整性和渐近最佳性能。我们证明了我们在模拟方面对自动化和非全面系统有效和渐近地找到安全低成本路径的疗效。
translated by 谷歌翻译
增强学习(RL)在接触式操纵中的经验成功(RL)从基于模型的角度来理解了很多待理解,其中关键困难通常归因于(i)触点模式的爆炸,(ii)僵硬,非平滑接触动力学和由此产生的爆炸 /不连续梯度,以及(iii)计划问题的非转换性。 RL的随机性质通过有效采样和平均接触模式来解决(i)和(ii)。另一方面,基于模型的方法通过分析平滑接触动力学来解决相同的挑战。我们的第一个贡献是建立两种方法的简单系统方法的理论等效性,并在许多复杂示例上提供定性和经验的等效性。为了进一步减轻(II),我们的第二个贡献是凸面的凸面,可区分和准动力的触点动力学表述,这两个方案都可以平滑方案,并且通过实验证明了对接触富含接触的计划非常有效。我们的最终贡献解决了(III),在其中我们表明,当通过平滑度抽取接触模式时,基于经典的运动计划算法在全球计划中可以有效。将我们的方法应用于具有挑战性的接触式操纵任务的集合中,我们证明了基于模型的有效运动计划可以实现与RL相当的结果,而计算却大大较少。视频:https://youtu.be/12ew4xc-vwa
translated by 谷歌翻译