A large number of empirical studies on applying self-attention models in the domain of recommender systems are based on offline evaluation and metrics computed on standardized datasets, without insights on how these models perform in real life scenarios. Moreover, many of them do not consider information such as item and customer metadata, although deep-learning recommenders live up to their full potential only when numerous features of heterogeneous types are included. Also, typically recommendation models are designed to serve well only a single use case, which increases modeling complexity and maintenance costs, and may lead to inconsistent customer experience. In this work, we present a reusable Attention-based Fashion Recommendation Algorithm (AFRA), that utilizes various interaction types with different fashion entities such as items (e.g., shirt), outfits and influencers, and their heterogeneous features. Moreover, we leverage temporal and contextual information to address both short and long-term customer preferences. We show its effectiveness on outfit recommendation use cases, in particular: 1) personalized ranked feed; 2) outfit recommendations by style; 3) similar item recommendation and 4) in-session recommendations inspired by most recent customer actions. We present both offline and online experimental results demonstrating substantial improvements in customer retention and engagement.
translated by 谷歌翻译
Over the past years, fashion-related challenges have gained a lot of attention in the research community. Outfit generation and recommendation, i.e., the composition of a set of items of different types (e.g., tops, bottom, shoes, accessories) that go well together, are among the most challenging ones. That is because items have to be both compatible amongst each other and also personalized to match the taste of the customer. Recently there has been a plethora of work targeted at tackling these problems by adopting various techniques and algorithms from the machine learning literature. However, to date, there is no extensive comparison of the performance of the different algorithms for outfit generation and recommendation. In this paper, we close this gap by providing a broad evaluation and comparison of various algorithms, including both personalized and non-personalized approaches, using online, real-world user data from one of Europe's largest fashion stores. We present the adaptations we made to some of those models to make them suitable for personalized outfit generation. Moreover, we provide insights for models that have not yet been evaluated on this task, specifically, GPT, BERT and Seq-to-Seq LSTM.
translated by 谷歌翻译
推荐兴趣点是一个困难的问题,需要从基于位置的社交媒体平台中提取精确的位置信息。对于这种位置感知的推荐系统而言,另一个具有挑战性和关键的问题是根据用户的历史行为对用户的偏好进行建模。我们建议使用Transformers的双向编码器表示的位置感知建议系统,以便为用户提供基于位置的建议。提出的模型包含位置数据和用户偏好。与在序列中预测每个位置的下一项(位置)相比,我们的模型可以为用户提供更相关的结果。基准数据集上的广泛实验表明,我们的模型始终优于各种最新的顺序模型。
translated by 谷歌翻译
推荐系统是机器学习系统的子类,它们采用复杂的信息过滤策略来减少搜索时间,并向任何特定用户建议最相关的项目。混合建议系统以不同的方式结合了多种建议策略,以从其互补的优势中受益。一些混合推荐系统已经结合了协作过滤和基于内容的方法来构建更强大的系统。在本文中,我们提出了一个混合推荐系统,该系统将基于最小二乘(ALS)的交替正方(ALS)的协作过滤与深度学习结合在一起,以增强建议性能,并克服与协作过滤方法相关的限制,尤其是关于其冷启动问题。本质上,我们使用ALS(协作过滤)的输出来影响深度神经网络(DNN)的建议,该建议结合了大数据处理框架中的特征,上下文,结构和顺序信息。我们已经进行了几项实验,以测试拟议混合体架构向潜在客户推荐智能手机的功效,并将其性能与其他开源推荐人进行比较。结果表明,所提出的系统的表现优于几个现有的混合推荐系统。
translated by 谷歌翻译
Session-Based Recommenders (SBRs) aim to predict users' next preferences regard to their previous interactions in sessions while there is no historical information about them. Modern SBRs utilize deep neural networks to map users' current interest(s) during an ongoing session to a latent space so that their next preference can be predicted. Although state-of-art SBR models achieve satisfactory results, most focus on studying the sequence of events inside sessions while ignoring temporal details of those events. In this paper, we examine the potential of session temporal information in enhancing the performance of SBRs, conceivably by reflecting the momentary interests of anonymous users or their mindset shifts during sessions. We propose the STAR framework, which utilizes the time intervals between events within sessions to construct more informative representations for items and sessions. Our mechanism revises session representation by embedding time intervals without employing discretization. Empirical results on Yoochoose and Diginetica datasets show that the suggested method outperforms the state-of-the-art baseline models in Recall and MRR criteria.
translated by 谷歌翻译
受到计算机愿景和语言理解的深度学习的巨大成功的影响,建议的研究已经转移到发明基于神经网络的新推荐模型。近年来,我们在开发神经推荐模型方面目睹了显着进展,这概括和超越了传统的推荐模型,由于神经网络的强烈代表性。在本调查论文中,我们从建议建模与准确性目标的角度进行了系统审查,旨在总结该领域,促进研究人员和从业者在推荐系统上工作的研究人员和从业者。具体而具体基于推荐建模期间的数据使用,我们将工作划分为协作过滤和信息丰富的建议:1)协作滤波,其利用用户项目交互数据的关键来源; 2)内容丰富的建议,其另外利用与用户和项目相关的侧面信息,如用户配置文件和项目知识图; 3)时间/顺序推荐,其考虑与交互相关的上下文信息,例如时间,位置和过去的交互。在为每种类型审查代表性工作后,我们终于讨论了这一领域的一些有希望的方向。
translated by 谷歌翻译
由于知识图表提供的丰富信息,基于路径的可解释的推荐系统的最新进展引起了更大的关注。最现有的可解释的建议仅利用静态知识图表并忽略动态用户项演进,导致不太令人信服和不准确的解释。虽然有一些作品,但意识到建模用户的时间顺序行为可以提高推荐器系统的性能和解释性,其中大多数只关注用户在路径内的顺序交互或独立和单独的推荐机制。在本文中,我们提出了一种新颖的时间元路径指导可解释的推荐利用加强学习(TMER-RL),它利用了连续项目之间的加强项 - 项目路径建模,其注意机制在动态知识图上顺序模拟动态用户项演进用于解释的建议。与使用繁重的经常性神经网络模拟时间信息的现有作品相比,我们提出了简单但有效的神经网络,以捕获用户的历史项目功能和基于路径的上下文,以表征下一个购买的项目。与最近的强大基线相比,两个真实数据集的TMMER广泛评估显示了最先进的表现。
translated by 谷歌翻译
预测短期交互会话的下一个交互是基于会话的推荐中的一个具有挑战性的任务。几乎所有现有的作品都依赖于项目转换模式,并在建模用户偏好时忽略用户历史会话的影响,这通常会导致非个性化推荐。此外,基于现有的个性化会话的推荐人仅基于当前用户的会话捕获用户首选项,而是忽略来自其他用户的历史会话的有用物品转换模式。为了解决这些问题,我们提出了一种新颖的异构全球图形神经网络(HG-GNN)以以微妙的方式利用所有会话的物品过渡,以便更好地推断用户偏好与当前和历史会话。为了有效利用所有用户的所有会话转换,我们提出了一种新的异构全局图,该图包含会话,用户项交互和全局共同发生项目的项目转换。此外,为了综合地从会话中捕获用户偏好,我们建议通过两个图形增强偏好编码器学习来自全局图的两个用户表示。具体地,我们在异构全球图上设计一种新的异构图形神经网络(HGNN),以了解具有丰富语义的长期用户偏好和项目表示。基于HGNN,我们提出了当前偏好编码器和历史偏好编码器,分别捕获来自当前和历史会话的不同级别的用户偏好。为实现个性化建议,我们将用户当前偏好和历史利益的表示集成到生成最终用户首选项表示。三个真实数据集的广泛实验结果表明,我们的模型优于其他最先进的方法。
translated by 谷歌翻译
基于会话的推荐系统(SBRS)表现出优于常规方法的性能。但是,它们在大规模工业数据集上显示出有限的可伸缩性,因为大多数模型都会学习一个嵌入每个项目。这导致了巨大的记忆要求(每项存储一个矢量),并且在稀疏的会话上具有冷启动或不受欢迎的项目的性能差。使用一个公共和一个大型工业数据集,我们在实验上表明,最先进的SBRS在稀疏项目的稀疏会议上的性能较低。我们提出了M2TREC,这是一种基于会话建议的元数据感知的多任务变压器模型。我们提出的方法学习了从项目元数据到嵌入的转换函数,因此是免费的(即,不需要学习一个嵌入每个项目)。它集成了项目元数据以学习各种项目属性的共享表示。在推论期间,将为与先前在培训期间观察到的项目共享的属性分配新的或不受欢迎的项目,因此将与这些项目具有相似的表示,从而使甚至冷启动和稀疏项目的建议。此外,M2TREC接受了多任务设置的培训,以预测会话中的下一个项目及其主要类别和子类别。我们的多任务策略使该模型收敛更快,并显着改善了整体性能。实验结果表明,使用我们在两个数据集中稀疏项目上提出的方法进行了显着的性能增长。
translated by 谷歌翻译
Tasks critical to enterprise profitability, such as customer churn prediction, fraudulent account detection or customer lifetime value estimation, are often tackled by models trained on features engineered from customer data in tabular format. Application-specific feature engineering adds development, operationalization and maintenance costs over time. Recent advances in representation learning present an opportunity to simplify and generalize feature engineering across applications. When applying these advancements to tabular data researchers deal with data heterogeneity, variations in customer engagement history or the sheer volume of enterprise datasets. In this paper, we propose a novel approach to encode tabular data containing customer transactions, purchase history and other interactions into a generic representation of a customer's association with the business. We then evaluate these embeddings as features to train multiple models spanning a variety of applications. CASPR, Customer Activity Sequence-based Prediction and Representation, applies Transformer architecture to encode activity sequences to improve model performance and avoid bespoke feature engineering across applications. Our experiments at scale validate CASPR for both small and large enterprise applications.
translated by 谷歌翻译
对于许多在线平台(例如,视频共享网站,电子商务系统),学习动态用户的偏好已成为越来越重要的组成部分,以提出顺序建议。先前的工作已经做出了许多努力,以基于各种体系结构(例如,经常性的神经网络和自我注意机制)对用户交互序列进行建模项目项目过渡。最近出现的图形神经网络还用作有用的骨干模型,可在顺序推荐方案中捕获项目依赖性。尽管它们有效,但现有的方法却远远集中在具有单一相互作用类型的项目序列表示上,因此仅限于捕获用户和项目之间的动态异质关系结构(例如,页面视图,添加最佳选择,购买,购买)。为了应对这一挑战,我们设计了多行为超毛力增强的变压器框架(MBHT),以捕获短期和长期跨型行为依赖性。具体而言,多尺度变压器配备了低级别的自我注意力,可从细粒度和粗粒水平的共同编码行为感知的顺序模式。此外,我们将全局多行为依赖性纳入HyperGraph神经体系结构中,以自定义的方式捕获层次长期项目相关性。实验结果证明了我们MBHT在不同环境中的各种最新推荐解决方案的优势。进一步的消融研究证明了我们的模型设计和新MBHT框架的好处的有效性。我们的实施代码在以下网址发布:https://github.com/yuh-yang/mbht-kdd22。
translated by 谷歌翻译
Embedding based product recommendations have gained popularity in recent years due to its ability to easily integrate to large-scale systems and allowing nearest neighbor searches in real-time. The bulk of studies in this area has predominantly been focused on similar item recommendations. Research on complementary item recommendations, on the other hand, still remains considerably under-explored. We define similar items as items that are interchangeable in terms of their utility and complementary items as items that serve different purposes, yet are compatible when used with one another. In this paper, we apply a novel approach to finding complementary items by leveraging dual embedding representations for products. We demonstrate that the notion of relatedness discovered in NLP for skip-gram negative sampling (SGNS) models translates effectively to the concept of complementarity when training item representations using co-purchase data. Since sparsity of purchase data is a major challenge in real-world scenarios, we further augment the model using synthetic samples to extend coverage. This allows the model to provide complementary recommendations for items that do not share co-purchase data by leveraging other abundantly available data modalities such as images, text, clicks etc. We establish the effectiveness of our approach in improving both coverage and quality of recommendations on real world data for a major online retail company. We further show the importance of task specific hyperparameter tuning in training SGNS. Our model is effective yet simple to implement, making it a great candidate for generating complementary item recommendations at any e-commerce website.
translated by 谷歌翻译
在这个大数据时代,当前一代很难从在线平台中包含的大量数据中找到正确的数据。在这种情况下,需要一个信息过滤系统,可以帮助他们找到所需的信息。近年来,出现了一个称为推荐系统的研究领域。推荐人变得重要,因为他们拥有许多现实生活应用。本文回顾了推荐系统在电子商务,电子商务,电子资源,电子政务,电子学习和电子生活中的不同技术和发展。通过分析有关该主题的最新工作,我们将能够详细概述当前的发展,并确定建议系统中的现有困难。最终结果为从业者和研究人员提供了对建议系统及其应用的必要指导和见解。
translated by 谷歌翻译
用户嵌入(用户的矢量化表示)对于推荐系统至关重要。已经提出了许多方法来为用户构建代表性,以找到用于检索任务的类似项目,并且已被证明在工业推荐系统中也有效。最近,人们发现使用多个嵌入式代表用户的能力,希望每个嵌入代表用户对某个主题的兴趣。通过多息表示,重要的是要对用户对不同主题的喜好进行建模以及偏好如何随时间变化。但是,现有方法要么无法估算用户对每个利息的亲和力,要么不合理地假设每个用户的每一个利息随时间而逐渐消失,从而损害了候选人检索的召回。在本文中,我们提出了多功能偏好(MIP)模型,这种方法不仅可以通过更有效地使用用户的顺序参与来为用户产生多种利益因此,可以按比例地从每个利息中检索候选人。在各种工业规模的数据集上进行了广泛的实验,以证明我们方法的有效性。
translated by 谷歌翻译
许多现代的顺序推荐系统使用深层神经网络,可以有效地估计项目的相关性,但需要大量时间进行训练。慢速培训增加了费用,阻碍了产品开发时间表,并防止该模型定期更新以适应不断变化的用户偏好。培训这样的顺序模型涉及对过去的用户互动进行适当采样以创建现实的培训目标。现有的培训目标有局限性。例如,下一个项目预测永远不会将序列的开头用作学习目标,从而可能丢弃有价值的数据。另一方面,Bert4Rec使用的项目掩盖仅与顺序建议的目标无关。因此,它需要更多的时间来获得有效的模型。因此,我们提出了一个基于新颖的序列训练目标采样,以解决这两个局限性。我们将我们的方法应用于最近和最新的模型架构,例如Gru4Rec,Caser和Sasrec。我们表明,通过我们的方法增强的模型可以实现超过或非常接近bert4rec的状态的性能,但训练时间却少得多。
translated by 谷歌翻译
我们的目标是为阿里巴巴业务的每个用户和每个产品项目建立一般代表性(嵌入),包括淘宝和Tmall,这是世界上最大的电子商务网站之一。用户和项目的代表性在各种下游应用程序中发挥着关键作用,包括建议系统,搜索,营销,需求预测等。受到自然语言处理(NLP)域中的BERT模型的启发,我们提出了GUIM(与代表的混合物混合在一起)的GUIM(一般用户项目),以实现大量,结构化的多模式数据,包括数亿美元的相互作用用户和项目。我们利用表示(MOR)的混合物作为一种新颖的表示形式来建模每个用户的各种兴趣。此外,我们使用对比度学习中的Infonce,以避免由于众多词汇的大小(令牌)词汇大小,因此避免了棘手的计算成本。最后,我们建议一组代表性的下游任务作为标准基准,以评估学到的用户和/或项目嵌入的质量,类似于NLP域中的胶合基准。我们在这些下游任务中的实验结果清楚地表明了从GUIM模型中学到的嵌入的比较价值。
translated by 谷歌翻译
基于会话的建议系统在会话中捕获用户的短期兴趣。会话上下文(即,会话中用户在会话中的高级兴趣或意图)在大多数数据集中都没有明确给出,并且隐式推断会话上下文作为项目级属性的汇总是粗略的。在本文中,我们提出了ISCON,该ISCON隐含地将会议上下文化。ISCON首先通过创建会话信息图,学习图嵌入和聚类来为会话生成隐式上下文,以将会话分配给上下文。然后,ISCON训练会话上下文预测器,并使用预测上下文的嵌入来增强下一项目的预测准确性。四个数据集的实验表明,ISCON比最新模型具有优越的下一项目预测准确性。REDDIT数据集中的ISCON的案例研究证实,分配的会话上下文是独特而有意义的。
translated by 谷歌翻译
本文使用机器学习方法对建模用户行为进行建模的开放精算数学问题,以预测非寿命保险产品的购买意图。一家公司了解用户与其网站的互动是有价值的,因为它为消费者行为提供了丰富和个性化的洞察力。用户行为建模的大多数现有研究旨在解释或预测搜索引擎结果页面或在赞助搜索中估计点击率。这些模型基于关于网页的用户检测模式的概念和网页的项目表示。调查建模用户行为以预测商业网站的购买意图的问题,我们观察到用户的意图会产生高依赖,对用户如何在用户访问的不同网页的方式导航网站,什么样的网页用户互动,用户在每个网页上花了多少时间。灵感来自这些发现,我们提出了两种不同的方式代表用户会话的特征,导致了基于用户点击的购买预测的两个模型:一个基于馈送前向神经网络,另一个基于经常性神经网络。我们通过使用用户的人口统计特征将上述两种模型与模型进行比较,检查用户点击用户点击的歧视以预测购买意图。我们的实验结果表明,根据标准分类评估指标,我们的点击基础模型显着优于人口统计模型,并且基于用户点击的顺序表示的模型比基于点击特征工程的模型产生略大的性能。
translated by 谷歌翻译
推荐系统,为用户提供个性化建议,为当今的许多社交媒体,电子商务和娱乐提供动力。但是,已知这些系统可以从各种角度从智力上隔离用户,或引起过滤气泡。在我们的工作中,我们表征和减轻了这种过滤器气泡效应。我们通过根据其用户 - 项目交互历史记录对各种数据点进行分类,并使用众所周知的Tracin方法对彼此的影响进行分类。最后,我们通过仔细地重新训练我们的建议系统来减轻这种过滤器气泡效果而不会损害精度。
translated by 谷歌翻译
在隐性反馈推荐中,将短期偏好纳入推荐系统近年来引起了不断的关注。但是,在历史交互中的意外行为,如偶然点击一些物品,也不能反映用户固有的偏好。现有研究未能模拟意外行为的影响,从而实现劣等的推荐性能。在本文中,我们提出了一种多偏好模型(MPM)来消除意外行为的影响。 MPM首先通过细粒度的偏好模块从最近的历史交互中提取用户的即时偏好。然后,培训意外行为检测器以判断这些即时偏好是否由意外行为偏置。我们还将用户的一般偏好集成在MPM中。最后,执行输出模块以消除意外行为的影响,并集成所有信息以进行最终推荐。我们在电影的两个数据集和电子零售中进行广泛的实验,展示了我们在最先进的方法上的模型的显着改进。实验结果表明,MPM在HR @ 10和NDCG @ 10中获得了大规模的改善,平均与斯trec模型相比相对增加了3.643%和4.107%。我们在https://github.com/chenjie04/mpm/发布我们的代码。
translated by 谷歌翻译