检测会计异常是财务报表审核中的反复挑战。最近,已经提出了源自深度学习(DL)的新方法来审核声明的基本会计记录的大量。但是,由于它们的大量参数,这种模型表现出固有不透明的缺点。同时,隐藏模型的内部运作通常会阻碍其现实世界的应用。该观察结果在财务审计中尤其如此,因为审计师必须合理地解释和证明其审计决定是合理的。如今,已经提出了各种可解释的AI(XAI)技术来应对这一挑战,例如Shapley添加说明(Shap)。但是,在经常在财务审核中应用的无监督DL中,这些方法在编码变量级别上解释了模型输出。结果,人类审计师通常很难理解自动编码器神经网络(AENNS)的解释。为了减轻此缺点,我们提出(重塑),该属性在汇总属性级别上解释了模型输出。此外,我们引入了一个评估框架,以比较XAI方法在审计中的多功能性。我们的实验结果表明,经验证据表明,与最先进的基线相比,重塑结果是多功能解释的。我们将这种属性级别的解释视为在财务审计中采用无监督的DL技术的必要下一步。
translated by 谷歌翻译
可解释的AI(XAI)的最新进展增加了对各个行业中安全和可解释的AI模型部署的需求。尽管深度神经网络在各种领域取得了最新的成功,但了解这种复杂模型的决策过程对于领域专家来说仍然是一项艰巨的任务。尤其是在金融领域,仅指向通常由数百种混合类型列组成的异常,对专家的价值有限。因此,在本文中,我们提出了一个框架,用于解释使用用于混合类型表格数据的Denoisising自动编码器。我们专门将技术集中在错误的观察方面上。这是通过将潜在误差定位的单个样品柱(单元)定位并分配相应的置信度得分来实现的。此外,该模型提供了预期的单元格估计来解决错误。我们根据三个标准的公共表格数据集(信用默认,成人,IEEE欺诈)和一个专有数据集(Holdings)来评估我们的方法。我们发现,适用于此任务的Denoing自动编码器已经在细胞误差检测率和预期价值率中的其他方法都优于其他方法。此外,我们分析了设计用于细胞误差检测的专门损失如何进一步改善这些指标。我们的框架是为域专家设计的,以了解异常的异常特征,并改善内部数据质量管理流程。
translated by 谷歌翻译
人工智能(AI)和机器学习(ML)在网络安全挑战中的应用已在行业和学术界的吸引力,部分原因是对关键系统(例如云基础架构和政府机构)的广泛恶意软件攻击。入侵检测系统(IDS)使用某些形式的AI,由于能够以高预测准确性处理大量数据,因此获得了广泛的采用。这些系统托管在组织网络安全操作中心(CSOC)中,作为一种防御工具,可监视和检测恶意网络流,否则会影响机密性,完整性和可用性(CIA)。 CSOC分析师依靠这些系统来决定检测到的威胁。但是,使用深度学习(DL)技术设计的IDS通常被视为黑匣子模型,并且没有为其预测提供理由。这为CSOC分析师造成了障碍,因为他们无法根据模型的预测改善决策。解决此问题的一种解决方案是设计可解释的ID(X-IDS)。这项调查回顾了可解释的AI(XAI)的最先进的ID,目前的挑战,并讨论了这些挑战如何涉及X-ID的设计。特别是,我们全面讨论了黑匣子和白盒方法。我们还在这些方法之间的性能和产生解释的能力方面提出了权衡。此外,我们提出了一种通用体系结构,该建筑认为人类在循环中,该架构可以用作设计X-ID时的指南。研究建议是从三个关键观点提出的:需要定义ID的解释性,需要为各种利益相关者量身定制的解释以及设计指标来评估解释的需求。
translated by 谷歌翻译
机器学习(ML)和深度学习(DL)方法正在迅速采用,尤其是计算机网络安全,如欺诈检测,网络异常检测,入侵检测等等。然而,ML和DL基础模型缺乏透明度是其实施和由于其黑​​匣子性质而受到批评的主要障碍,即使具有如此巨大的结果。可解释的人工智能(XAI)是一个有希望的区域,可以通过给出解释和解释其产出来改善这些模型的可信度。如果ML和基于DL的模型的内部工作是可以理解的,那么它可以进一步帮助改善其性能。本文的目的是表明,Xai如何用于解释DL模型的结果,在这种情况下是AutoEncoder。并且,根据解释,我们改善了计算机网络异常检测的性能。基于福谢值的内核形状方法用作新颖的特征选择技术。此方法用于仅识别实际上导致该组攻击/异常实例的异常行为的那些功能。稍后,这些功能集用于培训和验证AutoEncoder,而是仅在良性数据上验证。最后,基于特征选择方法提出的其他两个模型的内置Shap_Model始终。整个实验是在最新的Cicids2017网络数据集的子集上进行的。 Shap_Model的总体精度和AUC分别为94%和0.969。
translated by 谷歌翻译
正在进行的“数字化转型”从根本上改变了审计证据的性质,记录和数量。如今,国际审计标准(ISA)要求审计师检查财务报表的大量基础数字会计记录。结果,审计公司还“数字化”了他们的分析能力并投资深度学习(DL),这是机器学习的成功子学科。 DL的应用提供了从多个客户(例如在同一行业或管辖权中运营的组织)学习专业审计模型的能力。通常,法规要求审核员遵守严格的数据机密性措施。同时,最近有趣的发现表明,大规模的DL模型容易受到泄漏敏感培训数据信息的影响。如今,尚不清楚审计公司在遵守数据保护法规的同时如何应用DL模型。在这项工作中,我们提出了一个联合学习框架,以培训DL模型,以审核多个客户的相关会计数据。该框架涵盖了差异隐私和拆分学习能力,以减轻模型推断中的数据机密性风险。我们评估了在三个现实世界中付款数据集中检测会计异常的方法。我们的结果提供了经验证据,表明审计师可以从DL模型中受益,这些模型从专有客户数据的多个来源积累知识。
translated by 谷歌翻译
国际审计标准要求直接评估财务报表的潜在会计期刊条目。由人工智能的进步驱动,深度学习启发的审计技术出现了审查大量日记帐分类数据。但是,在定期审计中,大多数提出的方法都适用于从相对的静止期刊入学人群中学到,例如财政季度或年份。忽略审计相关分布变更在培训数据中不明显的情况或随时间逐步可用。相比之下,在持续审计中,深度学习模型在录制的日记条目流中持续培训,例如,最后一小时。导致以前知识干扰新信息的情况,并将完全覆盖。这项工作提出了一个持续的异常检测框架,以克服这两个挑战,旨在从日记帐数据经验流中学习。框架是基于故意设计的审计场景和两个现实世界数据集的评估。我们的实验结果提供了初步证据,即这种学习方案提供了减少假冒警报和假阴性决策的能力。
translated by 谷歌翻译
最近,在以结果为导向的预测过程监测(OOPPM)的领域进行了转变,以使用可解释的人工智能范式中的模型,但是评估仍然主要是通过基于绩效的指标来进行的,而不是考虑到启示性和缺乏可行性。解释。在本文中,我们通过解释的解释性(通过广泛使用的XAI属性和功能复杂性)和解释性模型的忠诚(通过单调性和分歧的水平)来定义解释性。沿事件,情况和控制流透视图分析了引入的属性,这些视角是基于过程的分析的典型代表。这允许定量比较,除其他外,固有地创建了用事后解释(例如Shapley值)(例如Shapley值)的固有创建的解释(例如逻辑回归系数)。此外,本文通过洞悉如何在OOPPM中典型的OOPPM中典型的变化预处理,模型的复杂性和事后解释性技术来撰写基于事件日志和手头的任务的准则,以根据事件日志规范和手头的任务选择适当的模型,以根据事件日志规范和手头任务选择适当的模型。影响模型的解释性。为此,我们在13个现实生活事件日志上基准了七个分类器。
translated by 谷歌翻译
如今,人工智能(AI)已成为临床和远程医疗保健应用程序的基本组成部分,但是最佳性能的AI系统通常太复杂了,无法自我解释。可解释的AI(XAI)技术被定义为揭示系统的预测和决策背后的推理,并且在处理敏感和个人健康数据时,它们变得更加至关重要。值得注意的是,XAI并未在不同的研究领域和数据类型中引起相同的关注,尤其是在医疗保健领域。特别是,许多临床和远程健康应用程序分别基于表格和时间序列数据,而XAI并未在这些数据类型上进行分析,而计算机视觉和自然语言处理(NLP)是参考应用程序。为了提供最适合医疗领域表格和时间序列数据的XAI方法的概述,本文提供了过去5年中文献的审查,说明了生成的解释的类型以及为评估其相关性所提供的努力和质量。具体而言,我们确定临床验证,一致性评估,客观和标准化质量评估以及以人为本的质量评估作为确保最终用户有效解释的关键特征。最后,我们强调了该领域的主要研究挑战以及现有XAI方法的局限性。
translated by 谷歌翻译
已经探索了监督机器学习模型的算法追索问题的问题,以提供决策支持系统中更容易解释,透明和健壮的结果。未开发的区域是用于异常检测的算法求程,特别是仅具有离散特征值的表格数据。这里的问题是提出一组反事实,通过潜在的异常检测模型被认为是正常的,以便应用程序可以将此信息用于解释目的或推荐对策。我们提出了一种方法 - 在表格数据(CARAT)中保留异常算法的背景,该方法是有效,可扩展性且不可知的,对基础异常检测模型。 Carat使用基于变压器的编码器模型来通过查找可能性低的特征来解释异常。随后使用异常实例中特征的整体上下文来修改突出显示的功能,从而生成语义相干的反事实。广泛的实验有助于证明克拉的功效。
translated by 谷歌翻译
尽管在最近的文献中提出了几种类型的事后解释方法(例如,特征归因方法),但在系统地以有效且透明的方式进行系统基准测试这些方法几乎没有工作。在这里,我们介绍了OpenXai,这是一个全面且可扩展的开源框架,用于评估和基准测试事后解释方法。 OpenXAI由以下关键组件组成:(i)灵活的合成数据生成器以及各种现实世界数据集,预训练的模型和最新功能属性方法的集合,(ii)开源实现22个定量指标,用于评估忠诚,稳定性(稳健性)和解释方法的公平性,以及(iii)有史以来第一个公共XAI XAI排行榜对基准解释。 OpenXAI很容易扩展,因为用户可以轻松地评估自定义说明方法并将其纳入我们的排行榜。总体而言,OpenXAI提供了一种自动化的端到端管道,该管道不仅简化并标准化了事后解释方法的评估,而且还促进了基准这些方法的透明度和可重复性。 OpenXAI数据集和数据加载程序,最先进的解释方法的实现和评估指标以及排行榜,可在https://open-xai.github.io/上公开获得。
translated by 谷歌翻译
与经典的统计学习方法相比,机器和深度学习生存模型表现出相似甚至改进事件的预测能力,但太复杂了,无法被人类解释。有几种模型不合时宜的解释可以克服这个问题。但是,没有一个直接解释生存函数预测。在本文中,我们介绍了Survhap(t),这是第一个允许解释生存黑盒模型的解释。它基于Shapley添加性解释,其理论基础稳定,并在机器学习从业人员中广泛采用。拟议的方法旨在增强精确诊断和支持领域的专家做出决策。关于合成和医学数据的实验证实,survhap(t)可以检测具有时间依赖性效果的变量,并且其聚集是对变量对预测的重要性的决定因素,而不是存活。 survhap(t)是模型不可屈服的,可以应用于具有功能输出的所有型号。我们在http://github.com/mi2datalab/survshap中提供了python中时间相关解释的可访问实现。
translated by 谷歌翻译
Since the mid-10s, the era of Deep Learning (DL) has continued to this day, bringing forth new superlatives and innovations each year. Nevertheless, the speed with which these innovations translate into real applications lags behind this fast pace. Safety-critical applications, in particular, underlie strict regulatory and ethical requirements which need to be taken care of and are still active areas of debate. eXplainable AI (XAI) and privacy-preserving machine learning (PPML) are both crucial research fields, aiming at mitigating some of the drawbacks of prevailing data-hungry black-box models in DL. Despite brisk research activity in the respective fields, no attention has yet been paid to their interaction. This work is the first to investigate the impact of private learning techniques on generated explanations for DL-based models. In an extensive experimental analysis covering various image and time series datasets from multiple domains, as well as varying privacy techniques, XAI methods, and model architectures, the effects of private training on generated explanations are studied. The findings suggest non-negligible changes in explanations through the introduction of privacy. Apart from reporting individual effects of PPML on XAI, the paper gives clear recommendations for the choice of techniques in real applications. By unveiling the interdependencies of these pivotal technologies, this work is a first step towards overcoming the remaining hurdles for practically applicable AI in safety-critical domains.
translated by 谷歌翻译
人工智能(AI)模型的黑框性质不允许用户理解和有时信任该模型创建的输出。在AI应用程序中,不仅结果,而且结果的决策路径至关重要,此类Black-Box AI模型还不够。可解释的人工智能(XAI)解决了此问题,并定义了用户可解释的一组AI模型。最近,有几种XAI模型是通过在医疗保健,军事,能源,金融和工业领域等各个应用领域的黑盒模型缺乏可解释性和解释性来解决有关的问题。尽管XAI的概念最近引起了广泛关注,但它与物联网域的集成尚未完全定义。在本文中,我们在物联网域范围内使用XAI模型对最近的研究进行了深入和系统的综述。我们根据其方法和应用领域对研究进行分类。此外,我们旨在专注于具有挑战性的问题和开放问题,并为未来的方向指导开发人员和研究人员进行未来的未来调查。
translated by 谷歌翻译
异常检测领域中的大多数建议仅集中在检测阶段,特别是在最近的深度学习方法上。在提供高度准确的预测的同时,这些模型通常缺乏透明度,充当“黑匣子”。这种批评已经越来越多,即解释在可接受性和可靠性方面被认为非常相关。在本文中,我们通过检查ADMNC(混合数值和分类空间的异常检测)模型来解决此问题,这是一种现有的非常准确的,尽管不透明的异常检测器能够使用数值和分类输入进行操作。这项工作介绍了扩展EADMNC(在混合数值和分类空间上可解释的异常检测),这为原始模型获得的预测提供了解释性。通过Apache Spark Framework,我们保留了原始方法的可伸缩性。 EADMNC利用了先前的ADMNC模型的配方,以提供事前和事后解释性,同时保持原始体系结构的准确性。我们提出了一个事前模型,该模型在全球范围内通过将输入数据分割为均质组,仅使用少数变量来解释输出。我们设计了基于回归树的图形表示,主管可以检查以了解正常数据和异常数据之间的差异。我们的事后解释由基于文本的模板方法组成,该方法在本地提供了支持每个检测的文本参数。我们报告了广泛的现实数据,特别是在网络入侵检测领域的实验结果。使用网络入侵域中的专家知识来评估解释的有用性。
translated by 谷歌翻译
本文解决了解释黑框回归模型异常预测的任务。当使用黑框模型(例如从许多传感器测量值中预测能源消耗的一个模型)时,我们通常会有某些观察到的样品可能会显着偏离其预测的情况。这可能是由于亚最佳黑盒模型,或仅仅​​是因为这些样品是异常值。无论哪种情况,理想情况下都希望计算``责任分数'',以指示输入变量负责异常输出的程度。在这项工作中,我们将此任务形式化为一个统计逆问题:给定模型偏离预期值,推断每个输入变量的责任分数。我们提出了一种称为似然补偿(LC)的新方法,该方法基于可能性原理,并计算对每个输入变量的校正。据我们所知,这是第一个计算实际有价值异常模型偏差的责任分数的原则性框架。我们将方法应用于现实世界中的建筑能源预测任务,并根据专家反馈确认其实用性。
translated by 谷歌翻译
在人类循环机器学习应用程序的背景下,如决策支持系统,可解释性方法应在不使用户等待的情况下提供可操作的见解。在本文中,我们提出了加速的模型 - 不可知论解释(ACME),一种可解释的方法,即在全球和本地层面迅速提供特征重要性分数。可以将acme应用于每个回归或分类模型的后验。 ACME计算功能排名不仅提供了一个什么,但它还提供了一个用于评估功能值的变化如何影响模型预测的原因 - 如果分析工具。我们评估了综合性和现实世界数据集的建议方法,同时也与福芙添加剂解释(Shap)相比,我们制作了灵感的方法,目前是最先进的模型无关的解释性方法。我们在生产解释的质量方面取得了可比的结果,同时急剧减少计算时间并为全局和局部解释提供一致的可视化。为了促进该领域的研究,为重复性,我们还提供了一种存储库,其中代码用于实验。
translated by 谷歌翻译
由于机器学习模型变得越来越复杂和他们的应用程序变得越来越高赌注的,用于解释模型预测工具已经变得越来越重要。这促使模型explainability研究乱舞,并已引起了功能属性的方法,如石灰和SHAP。尽管它们的广泛使用,评价和比较不同功能属性的方法仍然具有挑战性:评价非常需要人的研究,以及实证评价指标往往是数据密集型或真实世界的数据集的计算望而却步。与基准特征归属算法库以及一套综合数据集:在这项工作中,我们通过释放XAI,台式解决这个问题。不同于现实世界的数据集,合成数据集允许那些需要评估地面实况夏普利值等指标的条件期望值的高效计算。我们释放合成的数据集提供了多种可配置模拟真实世界的数据参数。我们通过在多个评价指标和跨多种设置基准流行explainability技术展示我们的图书馆的力量。我们图书馆的多功能性和效率将有助于研究人员把他们的explainability方法从开发到部署。我们的代码可在https://github.com/abacusai/xai-bench。
translated by 谷歌翻译
尽管有无数的同伴审查的论文,证明了新颖的人工智能(AI)基于大流行期间的Covid-19挑战的解决方案,但很少有临床影响。人工智能在Covid-19大流行期间的影响因缺乏模型透明度而受到极大的限制。这种系统审查考察了在大流行期间使用可解释的人工智能(Xai)以及如何使用它可以克服现实世界成功的障碍。我们发现,Xai的成功使用可以提高模型性能,灌输信任在最终用户,并提供影响用户决策所需的值。我们将读者介绍给常见的XAI技术,其实用程序以及其应用程序的具体例子。 XAI结果的评估还讨论了最大化AI的临床决策支持系统的价值的重要步骤。我们说明了Xai的古典,现代和潜在的未来趋势,以阐明新颖的XAI技术的演变。最后,我们在最近出版物支持的实验设计过程中提供了建议的清单。潜在解决方案的具体示例也解决了AI解决方案期间的共同挑战。我们希望本次审查可以作为提高未来基于AI的解决方案的临床影响的指导。
translated by 谷歌翻译
深度学习的显着成功引起了人们对医学成像诊断的应用的兴趣。尽管最新的深度学习模型在分类不同类型的医学数据方面已经达到了人类水平的准确性,但这些模型在临床工作流程中几乎不采用,这主要是由于缺乏解释性。深度学习模型的黑盒子性提出了制定策略来解释这些模型的决策过程的必要性,从而导致了可解释的人工智能(XAI)主题的创建。在这种情况下,我们对应用于医学成像诊断的XAI进行了详尽的调查,包括视觉,基于示例和基于概念的解释方法。此外,这项工作回顾了现有的医学成像数据集和现有的指标,以评估解释的质量。此外,我们还包括一组基于报告生成的方法的性能比较。最后,还讨论了将XAI应用于医学成像以及有关该主题的未来研究指示的主要挑战。
translated by 谷歌翻译
本文研究了与可解释的AI(XAI)实践有关的两个不同但相关的问题。机器学习(ML)在金融服务中越来越重要,例如预批准,信用承销,投资以及各种前端和后端活动。机器学习可以自动检测培训数据中的非线性和相互作用,从而促进更快,更准确的信用决策。但是,机器学习模型是不透明的,难以解释,这是建立可靠技术所需的关键要素。该研究比较了各种机器学习模型,包括单个分类器(逻辑回归,决策树,LDA,QDA),异质集合(Adaboost,随机森林)和顺序神经网络。结果表明,整体分类器和神经网络的表现优于表现。此外,使用基于美国P2P贷款平台Lending Club提供的开放式访问数据集评估了两种先进的事后不可解释能力 - 石灰和外形来评估基于ML的信用评分模型。对于这项研究,我们还使用机器学习算法来开发新的投资模型,并探索可以最大化盈利能力同时最大程度地降低风险的投资组合策略。
translated by 谷歌翻译