可重复性是科学的基石,因为发现的复制是它们成为知识的过程。人们普遍认为,许多科学领域正在经历可重复性危机。这导致了各种准则的出版物,以提高研究可重复性。该教学章节旨在作为医学成像机器学习领域的研究人员的可重复性介绍。我们首先区分不同类型的可重复性。对于每个人,我们旨在定义它,描述实现它的要求并讨论其效用。本章以讨论可重复性的好处的讨论以及对这种概念的非态度方法及其在研究实践中的实施的认罪。
translated by 谷歌翻译
Data-driven Machine Learning has emerged as a promising approach for building accurate and robust statistical models from medical data, which is collected in huge volumes by modern healthcare systems. Existing medical data is not fully exploited by ML primarily because it sits in data silos and privacy concerns restrict access to this data. However, without access to sufficient data, ML will be prevented from reaching its full potential and, ultimately, from making the transition from research to clinical practice. This paper considers key factors contributing to this issue, explores how Federated Learning (FL) may provide a solution for the future of digital health and highlights the challenges and considerations that need to * Disclaimer: The opinions expressed herein are those of the authors and do not necessarily represent those of the institutions they are affiliated with, e.g. the U.S. Department of Health and Human Services or the National Institutes of Health. This is a pre-print version of https://www.nature.com/articles/s41746-020-00323-1 be addressed.
translated by 谷歌翻译
机器学习(ML)是人工智能(AI)的子场,其放射学中的应用正在以不断加速的速度增长。研究最多的ML应用程序是图像的自动解释。但是,可以将自然语言处理(NLP)与文本解释任务组合的ML结合使用,在放射学中也具有许多潜在的应用。一种这样的应用是放射学原始胶体的自动化,涉及解释临床放射学转介并选择适当的成像技术。这是一项必不可少的任务,可确保执行正确的成像。但是,放射科医生必须将专门用于原始胶片的时间进行报告,与推荐人或教学进行报告,交流。迄今为止,很少有使用临床文本自动选择协议选择的ML模型的出版物。本文回顾了该领域的现有文献。参考机器学习公约建议的最佳实践对已发布模型进行系统评估。讨论了在临床环境中实施自动质胶的进展。
translated by 谷歌翻译
计算病理(CPATH)是一种具有关于组织病理研究的新兴领域,通过计算和分析组织载玻片的数字化高分辨率图像的处理算法。CPATH最近的深度学习的发展已经成功地利用了组织学图像中的原始像素数据的纯粹体积,以预测诊断域,预测,治疗敏感性和患者分层中的目标参数 - 覆盖新数据驱动的AI时代的承诺既组织病理学和肿瘤。使用作为燃料和作为发动机的燃料和AI的数据,CPATH算法准备好用于起飞和最终发射到临床和药物轨道中。在本文中,我们讨论了CPATH限制和相关挑战,使读者能够区分HIPE的希望,并为未来的研究提供指示,以克服这个崭露头角领域的一些主要挑战,以使其发射到两个轨道上。
translated by 谷歌翻译
机器学习方法利用多参数生物标志物,特别是基于神经影像动物,具有改善痴呆早期诊断的巨大潜力,并预测哪些个体存在发展痴呆的风险。对于机器学习领域的基准算法和痴呆症中的神经影像症,并评估他们在临床实践中使用的潜力和临床试验,七年的大挑战已经在过去十年中组织:Miriad,Alzheimer的疾病大数据梦,Caddementia,机器学习挑战,MCI神经影像动物,蝌蚪和预测分析竞争。基于两个挑战评估框架,我们分析了这些大挑战如何互相补充研究问题,数据集,验证方法,结果和影响。七个大挑战解决了与(临床前)痴呆症(临床)痴呆症的筛查,诊断,预测和监测有关的问题。临床问题,任务和性能指标几乎没有重叠。然而,这具有提供对广泛问题的洞察力的优势,它也会限制对挑战的结果的验证。通常,获胜算法执行严格的数据预处理并组合了广泛的输入特征。尽管最先进的表演,但临床上没有挑战评估的大部分方法。为了增加影响,未来的挑战可以更加关注统计分析,对其与高于阿尔茨海默病的临床问题,以及使用超越阿尔茨海默病神经影像疾病的临床问题,以及超越阿尔茨海默病的临床问题。鉴于过去十年中汲取的潜力和经验教训,我们在未来十年及其超越的机器学习和神经影像中的大挑战前景兴奋。
translated by 谷歌翻译
Artificial Intelligence (AI) has become commonplace to solve routine everyday tasks. Because of the exponential growth in medical imaging data volume and complexity, the workload on radiologists is steadily increasing. We project that the gap between the number of imaging exams and the number of expert radiologist readers required to cover this increase will continue to expand, consequently introducing a demand for AI-based tools that improve the efficiency with which radiologists can comfortably interpret these exams. AI has been shown to improve efficiency in medical-image generation, processing, and interpretation, and a variety of such AI models have been developed across research labs worldwide. However, very few of these, if any, find their way into routine clinical use, a discrepancy that reflects the divide between AI research and successful AI translation. To address the barrier to clinical deployment, we have formed MONAI Consortium, an open-source community which is building standards for AI deployment in healthcare institutions, and developing tools and infrastructure to facilitate their implementation. This report represents several years of weekly discussions and hands-on problem solving experience by groups of industry experts and clinicians in the MONAI Consortium. We identify barriers between AI-model development in research labs and subsequent clinical deployment and propose solutions. Our report provides guidance on processes which take an imaging AI model from development to clinical implementation in a healthcare institution. We discuss various AI integration points in a clinical Radiology workflow. We also present a taxonomy of Radiology AI use-cases. Through this report, we intend to educate the stakeholders in healthcare and AI (AI researchers, radiologists, imaging informaticists, and regulators) about cross-disciplinary challenges and possible solutions.
translated by 谷歌翻译
信号处理是几乎任何传感器系统的基本组件,具有不同科学学科的广泛应用。时间序列数据,图像和视频序列包括可以增强和分析信息提取和量化的代表性形式的信号。人工智能和机器学习的最近进步正在转向智能,数据驱动,信号处理的研究。该路线图呈现了最先进的方法和应用程序的关键概述,旨在突出未来的挑战和对下一代测量系统的研究机会。它涵盖了广泛的主题,从基础到工业研究,以简明的主题部分组织,反映了每个研究领域的当前和未来发展的趋势和影响。此外,它为研究人员和资助机构提供了识别新前景的指导。
translated by 谷歌翻译
计算机辅助方法为诊断和预测脑疾病显示了附加的价值,因此可以支持临床护理和治疗计划中的决策。本章将洞悉方法的类型,其工作,输入数据(例如认知测试,成像和遗传数据)及其提供的输出类型。我们将专注于诊断的特定用例,即估计患者的当前“状况”,例如痴呆症的早期检测和诊断,对脑肿瘤的鉴别诊断以及中风的决策。关于预测,即对患者的未来“状况”的估计,我们将缩小用例,例如预测多发性硬化症中的疾病病程,并预测脑癌治疗后患者的结局。此外,根据这些用例,我们将评估当前的最新方法,并强调当前对这些方法进行基准测试的努力以及其中的开放科学的重要性。最后,我们评估了计算机辅助方法的当前临床影响,并讨论了增加临床影响所需的下一步。
translated by 谷歌翻译
用于预测和预测的机器学习(ML)方法已在定量科学中广泛存在。但是,基于ML的科学中有许多已知的方法论陷阱,包括数据泄漏。在本文中,我们系统地研究了基于ML的科学中的可重复性问题。我们表明,数据泄漏确实是一个普遍的问题,并导致了严重的可重复性失败。具体而言,通过对采用ML方法的研究社区中的文献调查,我们发现了17个领域,发现了错误,共同影响了329篇论文,在某些情况下导致了极其解放的结论。根据我们的调查,我们提出了8种泄漏类型的细粒分类法,范围从教科书错误到打开研究问题。我们主张基于ML的科学的基本方法论变化,因此可以在发布前捕获泄漏病例。为此,我们提出了模型信息表,以根据ML模型报告科学主张,以解决我们调查中确定的所有类型的泄漏。为了研究可重复性错误的影响和模型信息表的功效,我们在一个复杂的ML模型被认为比较旧的统计模型(例如逻辑回归(LR):内战预测)的领域进行了可重复性研究。我们发现,与LR模型相比,所有声称复杂ML模型具有出色性能的论文由于数据泄漏而无法再现,并且复杂的ML模型的性能并不比数十年历史的LR模型更好。尽管这些错误都无法通过阅读论文来捕获,但模型信息表将在每种情况下都能检测到泄漏。
translated by 谷歌翻译
本文介绍了一种使用旨在解决现实世界应用中CDSS的低适用性和可扩展性问题的数据驱动的预测模型来构建一致和适用的临床决策支持系统(CDSS)的方法。该方法基于域特定和数据驱动的支持程序的三种特定于域和数据驱动的支持程序,该程序将被纳入临床业务流程,具有更高的信任和预测结果和建议的解释性。在考虑的三个阶段,监管策略,数据驱动模式和解释程序被集成,以实现与决策者的自然域特定的互动,具有智能决策支持焦点的连续缩小。该提出的方法能够实现更高水平的自动化,可扩展性和CDSS的语义解释性。该方法是在软件解决方案中实现的,并在T2DM预测中进行了测试,使我们能够改善已知的临床尺度(例如FindRisk),同时保持与现有应用程序类似的特定问题的推理界面。这种继承与三分阶段的方法一起提供了更高的解决方案兼容性,并导致数据驱动的解决方案在现实案件中的信任,有效和解释应用。
translated by 谷歌翻译
方法比较对于为应用研究人员提供建议和指导至关重要,这些研究人员通常必须从多种可用的方法中进行选择。尽管文献中存在许多比较,但这些比较通常不是中立的,而是一种新颖的方法。除了选择设计和对研究结果的正确报告外,有关这种方法比较研究的基础数据还有不同的方法。大多数关于统计方法的手稿都依赖于仿真研究,并提供单个现实世界数据集作为激励和说明所研究方法的示例。相反,在监督学习的背景下,通常使用所谓的基准测试数据集评估方法,即作为社区中黄金标准的现实世界数据。另一方面,在这种情况下,仿真研究不那么普遍。本文的目的是调查这些方法之间的差异和相似性,讨论它们的优势和缺点,并最终开发新的方法来评估挑选两全其​​美的方法。为此,我们借用不同背景的想法,例如混合方法研究和临床方案评估。
translated by 谷歌翻译
随着各种公开的AI伦理原则的共识,差距仍然可以随时采用设计和开发负责任的AI系统。我们研究了来自澳大利亚国家科学研究机构(CSIRO)的研究人员和工程师的实践和经验,他们参与设计和开发AI系统的一系列目的。半结构化访谈用于检查参与者的做法如何与澳大利亚政府提出的一套高级AI伦理原则涉及并对齐。原则包括:隐私保护和安全,可靠性和安全性,透明度和解释性,公平性,竞争性,责任,人以人为本的价值观和人类,社会与环境福祉。研究了研究人员和工程师的见解以及在原则的实际应用中为它们提供的挑战。最后,提供了一系列组织响应,以支持实施高级AI道德原则。
translated by 谷歌翻译
如今,由于最近在人工智能(AI)和机器学习(ML)中的近期突破,因此,智能系统和服务越来越受欢迎。然而,机器学习不仅满足软件工程,不仅具有有希望的潜力,而且还具有一些固有的挑战。尽管最近的一些研究努力,但我们仍然没有明确了解开发基于ML的申请和当前行业实践的挑战。此外,目前尚不清楚软件工程研究人员应将其努力集中起来,以更好地支持ML应用程序开发人员。在本文中,我们报告了一个旨在了解ML应用程序开发的挑战和最佳实践的调查。我们合成从80名从业者(以不同的技能,经验和应用领域)获得的结果为17个调查结果;概述ML应用程序开发的挑战和最佳实践。参与基于ML的软件系统发展的从业者可以利用总结最佳实践来提高其系统的质量。我们希望报告的挑战将通知研究界有关需要调查的主题,以改善工程过程和基于ML的申请的质量。
translated by 谷歌翻译
概率机器学习越来越越来越多地向医学,经济,政治和超越的关键决策促进。我们需要证据支持所产生的决定是充分创建的。为了帮助发展对这些决定的信任,我们开发了一个分类划分的分类划分,在分析中的信任可以分解:(1)在现实世界目标的翻译中对特定培训数据的目标,(2)在训练数据上翻译培训数据到一个具体的数学问题,(3)在使用算法来解决所述的数学问题,(4)在使用特定代码实现的选择算法。我们详细介绍了每一步的信任如何失败,并用两种案例研究说明我们的分类法:分析小额信贷和经济学家预测2020年2020年总统选举的疗效分析。最后,我们描述了各种各样的方法,可用于增加我们分类的每一步的信任。我们的分类学突出了关于信任的现有研究工作倾向于集中注意力的步骤,以及建立信任的步骤尤其具有挑战性。
translated by 谷歌翻译
尽管机器学习在实践中被广泛使用,但对从业者对潜在安全挑战的理解知之甚少。在这项工作中,我们缩小了这一巨大的差距,并贡献了一项定性研究,重点是开发人员的机器学习管道和潜在脆弱组件的心理模型。类似的研究在其他安全领域有助于发现根本原因或改善风险交流。我们的研究揭示了从业人员的机器学习安全性心理模型的两个方面。首先,从业人员通常将机器学习安全与与机器学习无直接相关的威胁和防御措施混淆。其次,与大多数学术研究相反,我们的参与者认为机器学习的安全性与单个模型不仅相关,而在整个工作流程中,由多个组件组成。与我们的其他发现共同,这两个方面为确定机器学习安全性的心理模型提供了基础学习安全。
translated by 谷歌翻译
机器学习透明度(ML),试图揭示复杂模型的工作机制。透明ML承诺推进人为因素在目标用户中以人为本的人体目标的工程目标。从以人为本的设计视角,透明度不是ML模型的属性,而是一种能力,即算法与用户之间的关系;因此,与用户的迭代原型和评估对于获得提供透明度的充足解决方案至关重要。然而,由于有限的可用性和最终用户,遵循了医疗保健和医学图像分析的人以人为本的设计原则是具有挑战性的。为了调查医学图像分析中透明ML的状态,我们对文献进行了系统审查。我们的评论在医学图像分析应用程序的透明ML的设计和验证方面揭示了多种严重的缺点。我们发现,大多数研究到达迄今为止透明度作为模型本身的属性,类似于任务性能,而不考虑既未开发也不考虑最终用户也不考虑评估。此外,缺乏用户研究以及透明度声明的偶发验证将当代研究透明ML的医学图像分析有可能对用户难以理解的风险,因此临床无关紧要。为了缓解即将到来的研究中的这些缺点,同时承认人以人为中心设计在医疗保健中的挑战,我们介绍了用于医学图像分析中的透明ML系统的系统设计指令。 Intrult指南建议形成的用户研究作为透明模型设计的第一步,以了解用户需求和域要求。在此过程之后,会产生支持设计选择的证据,最终增加了算法提供透明度的可能性。
translated by 谷歌翻译
Many sciences have made significant breakthroughs by adopting online tools that help organize, structure and mine information that is too detailed to be printed in journals. In this paper, we introduce OpenML, a place for machine learning researchers to share and organize data in fine detail, so that they can work more effectively, be more visible, and collaborate with others to tackle harder problems. We discuss how OpenML relates to other examples of networked science and what benefits it brings for machine learning research, individual scientists, as well as students and practitioners.
translated by 谷歌翻译
基于机器学习(ML)的系统的制作需要在其生命周期中进行统计控制。仔细量化业务需求和识别影响业务需求的关键因素降低了项目故障的风险。业务需求的量化导致随机变量的定义,表示通过统计实验需要分析的系统关键性能指标。此外,可提供的培训和实验结果产生影响系统的设计。开发系统后,测试并不断监控,以确保其符合其业务需求。这是通过持续应用统计实验来分析和控制关键绩效指标来完成的。本书教授制作和开发基于ML的系统的艺术。它倡导“首先”方法,强调从项目生命周期开始定义统计实验的需要。它还详细讨论了如何在整个生命周期中对基于ML的系统进行统计控制。
translated by 谷歌翻译
由于算法预测对人类的影响增加,模型解释性已成为机器学习(ML)的重要问题。解释不仅可以帮助用户了解为什么ML模型做出某些预测,还可以帮助用户了解这些预测如何更改。在本论文中,我们研究了从三个有利位置的ML模型的解释性:算法,用户和教学法,并为解释性问题贡献了一些新颖的解决方案。
translated by 谷歌翻译
如今,人工智能(AI)已成为临床和远程医疗保健应用程序的基本组成部分,但是最佳性能的AI系统通常太复杂了,无法自我解释。可解释的AI(XAI)技术被定义为揭示系统的预测和决策背后的推理,并且在处理敏感和个人健康数据时,它们变得更加至关重要。值得注意的是,XAI并未在不同的研究领域和数据类型中引起相同的关注,尤其是在医疗保健领域。特别是,许多临床和远程健康应用程序分别基于表格和时间序列数据,而XAI并未在这些数据类型上进行分析,而计算机视觉和自然语言处理(NLP)是参考应用程序。为了提供最适合医疗领域表格和时间序列数据的XAI方法的概述,本文提供了过去5年中文献的审查,说明了生成的解释的类型以及为评估其相关性所提供的努力和质量。具体而言,我们确定临床验证,一致性评估,客观和标准化质量评估以及以人为本的质量评估作为确保最终用户有效解释的关键特征。最后,我们强调了该领域的主要研究挑战以及现有XAI方法的局限性。
translated by 谷歌翻译