基于深入的学习的诊断性能随着更多的注释数据而增加,但手动注释是大多数领域的瓶颈。专家在临床常规期间评估诊断图像,并在报告中写出他们的调查结果。基于临床报告的自动注释可以克服手动标记瓶颈。我们假设可以使用这些报告的稀疏信息引导的模型预测来生成用于检测任务的密度注释。为了证明疗效,我们在放射学报告中临床显着发现的数量指导的临床上显着的前列腺癌(CSPCA)注释。我们包括7,756个前列腺MRI检查,其中3,050人被手动注释,4,706次自动注释。我们对手动注释的子集进行了自动注释质量:我们的得分提取正确地确定了99.3 \%$ 99.3 \%$ 99.3 \%$的CSPCA病变数量,我们的CSPCA分段模型正确地本地化了83.8 \ PM 1.1 \%$的病变。我们评估了来自外部中心的300名检查前列腺癌检测表现,具有组织病理学证实的基础事实。通过自动标记的考试增强培训集改善了在接收器的患者的诊断区域,从$ 88.1 \ pm 1.1 \%$至89.8 \ pm 1.0 \%$($ p = 1.2 \ cdot 10 ^ { - 4} $ )每案中的一个错误阳性的基于病变的敏感性,每案件从79.2美元2.8 \%$ 85.4 \ PM 1.9 \%$($ P <10 ^ { - 4} $),以$ alm \ pm std。$超过15个独立运行。这种改进的性能展示了我们报告引导的自动注释的可行性。源代码在https://github.com/diagnijmegen/report-guiding-annotation上公开可用。最佳的CSPCA检测算法在https://grand-challenge.org/algorithms/bpmri-cspca-detection-report-guiding-annotations/中提供。
translated by 谷歌翻译
早期检测改善了胰腺导管腺癌(PDAC)中的预后,但挑战,因为病变通常很小,并且在对比增强的计算断层扫描扫描(CE-CT)上定义很差。深度学习可以促进PDAC诊断,但是当前模型仍然无法识别小(<2cm)病变。在这项研究中,最先进的深度学习模型用于开发用于PDAC检测的自动框架,专注于小病变。另外,研究了整合周围解剖学的影响。 CE-CT来自119个病理验证的PDAC患者的群组和123名没有PDAC患者的队列用于训练NNUNET用于自动病变检测和分割(\ TEXTIT {NNUNET \ _t})。训练了两种额外的鼻塞,以研究解剖学积分的影响:(1)分割胰腺和肿瘤(\ yryit {nnunet \ _tp}),(2)分割胰腺,肿瘤和多周围的解剖结构(\ textit {nnunet \_多发性硬化症})。外部可公开的测试集用于比较三个网络的性能。 \ Textit {nnunet \ _ms}实现了最佳性能,在整个测试集的接收器操作特性曲线下的区域为0.91,肿瘤的0.88 <2cm,显示最先进的深度学习可以检测到小型PDAC和解剖信息的好处。
translated by 谷歌翻译
前列腺癌是美国男人的第二致致命癌症。虽然磁共振成像(MRI)越来越多地用于引导前列腺癌诊断的靶向活组织检查,但其效用仍然受到限制,因为假阳性和假否定的高率以及较低的读者协议。机器学习方法在前列腺MRI上检测和定位癌症可以帮助标准化放射科学诠释。然而,现有的机器学习方法不仅在模型架构中不等,而且还可以在用于模型培训的地面真理标签策略中。在这项研究中,我们比较不同的标记策略,即病理证实放射科标签,整个安装组织病理学图像上的病理学家标签,以及病变水平和像素级数字病理学家标签(先前验证了组织病理学图像上的深层学习算法以预测像素 - 整个安装组织病理学图像上的Gleason模式)。我们分析这些标签对训练有素的机器学习模型的性能的影响。我们的实验表明,用它们培训的(1)放射科标签和模型可能会错过癌症,或低估癌症程度,(2)与他们培训的数字病理学家标签和模型与病理学家标签有高度的一致性,而(3)用数字病理学家培训的模型标签在两种不同疾病分布的两种不同群组中达到最佳性能,而不管使用的模型建筑如何。数字病理学家标签可以减少与人类注释相关的挑战,包括劳动力,时间,和读者间变异性,并且可以通过使可靠的机器学习模型进行培训来检测和定位前列腺癌,帮助弥合前列腺放射学和病理学之间的差距在MRI。
translated by 谷歌翻译
Non-invasive prostate cancer detection from MRI has the potential to revolutionize patient care by providing early detection of clinically-significant disease (ISUP grade group >= 2), but has thus far shown limited positive predictive value. To address this, we present an MRI-based deep learning method for predicting clinically significant prostate cancer applicable to a patient population with subsequent ground truth biopsy results ranging from benign pathology to ISUP grade group~5. Specifically, we demonstrate that mixed supervision via diverse histopathological ground truth improves classification performance despite the cost of reduced concordance with image-based segmentation. That is, where prior approaches have utilized pathology results as ground truth derived from targeted biopsies and whole-mount prostatectomy to strongly supervise the localization of clinically significant cancer, our approach also utilizes weak supervision signals extracted from nontargeted systematic biopsies with regional localization to improve overall performance. Our key innovation is performing regression by distribution rather than simply by value, enabling use of additional pathology findings traditionally ignored by deep learning strategies. We evaluated our model on a dataset of 973 (testing n=160) multi-parametric prostate MRI exams collected at UCSF from 2015-2018 followed by MRI/ultrasound fusion (targeted) biopsy and systematic (nontargeted) biopsy of the prostate gland, demonstrating that deep networks trained with mixed supervision of histopathology can significantly exceed the performance of the Prostate Imaging-Reporting and Data System (PI-RADS) clinical standard for prostate MRI interpretation.
translated by 谷歌翻译
Prostate cancer (PCa) is one of the most prevalent cancers in men and many people around the world die from clinically significant PCa (csPCa). Early diagnosis of csPCa in bi-parametric MRI (bpMRI), which is non-invasive, cost-effective, and more efficient compared to multiparametric MRI (mpMRI), can contribute to precision care for PCa. The rapid rise in artificial intelligence (AI) algorithms are enabling unprecedented improvements in providing decision support systems that can aid in csPCa diagnosis and understanding. However, existing state of the art AI algorithms which are based on deep learning technology are often limited to 2D images that fails to capture inter-slice correlations in 3D volumetric images. The use of 3D convolutional neural networks (CNNs) partly overcomes this limitation, but it does not adapt to the anisotropy of images, resulting in sub-optimal semantic representation and poor generalization. Furthermore, due to the limitation of the amount of labelled data of bpMRI and the difficulty of labelling, existing CNNs are built on relatively small datasets, leading to a poor performance. To address the limitations identified above, we propose a new Zonal-aware Self-supervised Mesh Network (Z-SSMNet) that adaptatively fuses multiple 2D, 2.5D and 3D CNNs to effectively balance representation for sparse inter-slice information and dense intra-slice information in bpMRI. A self-supervised learning (SSL) technique is further introduced to pre-train our network using unlabelled data to learn the generalizable image features. Furthermore, we constrained our network to understand the zonal specific domain knowledge to improve the diagnosis precision of csPCa. Experiments on the PI-CAI Challenge dataset demonstrate our proposed method achieves better performance for csPCa detection and diagnosis in bpMRI.
translated by 谷歌翻译
最近的人工智能(AI)算法已在各种医学分类任务上实现了放射科医生级的性能。但是,只有少数研究涉及CXR扫描异常发现的定位,这对于向放射学家解释图像级分类至关重要。我们在本文中介绍了一个名为Vindr-CXR的可解释的深度学习系统,该系统可以将CXR扫描分类为多种胸部疾病,同时将大多数类型的关键发现本地化在图像上。 Vindr-CXR接受了51,485次CXR扫描的培训,并通过放射科医生提供的边界盒注释进行了培训。它表现出与经验丰富的放射科医生相当的表现,可以在3,000张CXR扫描的回顾性验证集上对6种常见的胸部疾病进行分类,而在接收器操作特征曲线(AUROC)下的平均面积为0.967(95%置信区间[CI]:0.958---------0.958------- 0.975)。 VINDR-CXR在独立患者队列中也得到了外部验证,并显示出其稳健性。对于具有14种类型病变的本地化任务,我们的自由响应接收器操作特征(FROC)分析表明,VINDR-CXR以每扫描确定的1.0假阳性病变的速率达到80.2%的敏感性。还进行了一项前瞻性研究,以衡量VINDR-CXR在协助六名经验丰富的放射科医生方面的临床影响。结果表明,当用作诊断工具时,提出的系统显着改善了放射科医生本身之间的一致性,平均Fleiss的Kappa的同意增加了1.5%。我们还观察到,在放射科医生咨询了Vindr-CXR的建议之后,在平均Cohen的Kappa中,它们和系统之间的一致性显着增加了3.3%。
translated by 谷歌翻译
最近关于Covid-19的研究表明,CT成像提供了评估疾病进展和协助诊断的有用信息,以及帮助理解疾病。有越来越多的研究,建议使用深度学习来使用胸部CT扫描提供快速准确地定量Covid-19。兴趣的主要任务是胸部CT扫描的肺和肺病变的自动分割,确认或疑似Covid-19患者。在这项研究中,我们使用多中心数据集比较12个深度学习算法,包括开源和内部开发的算法。结果表明,合并不同的方法可以提高肺部分割,二元病变分割和多种子病变分割的总体测试集性能,从而分别为0.982,0.724和0.469的平均骰子分别。将得到的二元病变分段为91.3ml的平均绝对体积误差。通常,区分不同病变类型的任务更加困难,分别具有152mL的平均绝对体积差,分别为整合和磨碎玻璃不透明度为0.369和0.523的平均骰子分数。所有方法都以平均体积误差进行二元病变分割,该分段优于人类评估者的视觉评估,表明这些方法足以用于临床实践中使用的大规模评估。
translated by 谷歌翻译
多发性硬化症(MS)是中枢神经系统的慢性炎症和退行性疾病,其特征在于,白色和灰质的外观与个体患者的神经症状和标志进行地平整相关。磁共振成像(MRI)提供了详细的体内结构信息,允许定量和分类MS病变,其批判性地通知疾病管理。传统上,MS病变在2D MRI切片上手动注释,一个流程效率低,易于观察室内误差。最近,已经提出了自动统计成像分析技术以基于MRI体素强度检测和分段段病变。然而,它们的有效性受到MRI数据采集技术的异质性和MS病变的外观的限制。通过直接从图像学习复杂的病变表现,深度学习技术已经在MS病变分割任务中取得了显着的突破。在这里,我们提供了全面审查最先进的自动统计和深度学习MS分段方法,并讨论当前和未来的临床应用。此外,我们审查了域适应等技术策略,以增强现实世界临床环境中的MS病变分段。
translated by 谷歌翻译
本文提出了一种基于变压器的新型模型架构,用于涉及椎骨分析的医学成像问题。它考虑了此类模型在MR图像中的两种应用:(a)脊柱转移的检测以及椎骨骨折和转移索压缩的相关条件,(b)椎间盘上常见变性变化的放射学分级。我们的贡献如下:(i)我们提出了一个脊柱上下文变压器(SCT),这是一种适合分析椎体(VBS)等医学成像中重复解剖结构的深度学习结构。与以前的相关方法不同,SCT考虑了所有可用图像模式中观看的所有VBS,从而根据脊柱的其余部分和所有可用成像方式对每种图像进行了预测。 (ii)我们将体系结构应用于新颖而重要的任务:检测脊柱转移以及绳索压缩和椎骨骨折的相关条件/多系列脊柱MR扫描中的崩溃。这是使用从自由文本放射学报告中提取的注释而不是定制注释来完成的。然而,最终的模型表现出与测试集上椎骨级别放射科医师注释的强烈一致性。 (iii)我们还将SCT应用于现有问题:腰椎MR扫描中脊椎间盘(IVD)的放射学分级以进行常见的退化性变化。我们表明,通过考虑图像中椎体的背景,SCT提高了SCT的上下文,提高了SCT的准确性与先前发布的模型相比,几个等级。
translated by 谷歌翻译
通过磁共振成像(MRI)评估肿瘤负担对于评估胶质母细胞瘤的治疗反应至关重要。由于疾病的高异质性和复杂性,该评估的性能很复杂,并且与高变异性相关。在这项工作中,我们解决了这个问题,并提出了一条深度学习管道,用于对胶质母细胞瘤患者进行全自动的端到端分析。我们的方法同时确定了肿瘤的子区域,包括第一步的肿瘤,周围肿瘤和手术腔,然后计算出遵循神经符号学(RANO)标准的当前响应评估的体积和双相测量。此外,我们引入了严格的手动注释过程,其随后是人类专家描绘肿瘤子区域的,并捕获其分割的信心,后来在训练深度学习模型时被使用。我们广泛的实验研究的结果超过了760次术前和504例从公共数据库获得的神经胶质瘤后患者(2021 - 2020年在19个地点获得)和临床治疗试验(47和69个地点,可用于公共数据库(在19个地点获得)(47和69个地点)术前/术后患者,2009-2011)并以彻底的定量,定性和统计分析进行了备份,表明我们的管道在手动描述时间的一部分中对术前和术后MRI进行了准确的分割(最高20比人更快。二维和体积测量与专家放射科医生非常吻合,我们表明RANO测量并不总是足以量化肿瘤负担。
translated by 谷歌翻译
检测新的多发性硬化症(MS)病变是该疾病进化的重要标志。基于学习的方法的适用性可以有效地自动化此任务。然而,缺乏带有新型病变的注释纵向数据是训练健壮和概括模型的限制因素。在这项工作中,我们描述了一条基于学习的管道,该管道解决了检测和细分新MS病变的挑战性任务。首先,我们建议使用单个时间点对在分割任务进行训练的模型中使用转移学习。因此,我们从更轻松的任务中利用知识,并为此提供更多注释的数据集。其次,我们提出了一种数据综合策略,以使用单个时间点扫描生成新的纵向时间点。通过这种方式,我们将检测模型预算到大型合成注释数据集上。最后,我们使用旨在模拟MRI中数据多样性的数据实践技术。通过这样做,我们增加了可用的小注释纵向数据集的大小。我们的消融研究表明,每个贡献都会提高分割精度。使用拟议的管道,我们获得了MSSEG2 MICCAI挑战中新的MS病变的分割和检测的最佳分数。
translated by 谷歌翻译
病变分割是放射线工作流程的关键步骤。手动分割需要长时间的执行时间,并且容易发生可变性,从而损害了放射线研究及其鲁棒性的实现。在这项研究中,对非小细胞肺癌患者的计算机断层扫描图像进行了深入学习的自动分割方法。还评估了手动与自动分割在生存放射模型的性能中的使用。方法总共包括899名NSCLC患者(2个专有:A和B,1个公共数据集:C)。肺部病变的自动分割是通过训练先前开发的建筑NNU-NET进行的,包括2D,3D和级联方法。用骰子系数评估自动分割的质量,以手动轮廓为参考。通过从数据集A的手动和自动轮廓中提取放射性的手工制作和深度学习特征来探索自动分割对患者生存的放射素模型对患者生存的性能的影响。评估并比较模型的精度。结果通过平均2D和3D模型的预测以及应用后处理技术来提取最大连接的组件,可以实现具有骰子= 0.78 +(0.12)的自动和手动轮廓之间的最佳一致性。当使用手动或自动轮廓,手工制作或深度特征时,在生存模型的表现中未观察到统计差异。最好的分类器显示出0.65至0.78之间的精度。结论NNU-NET在自动分割肺部病变中的有希望的作用已得到证实,从而大大降低了时必的医生的工作量,而不会损害基于放射线学的生存预测模型的准确性。
translated by 谷歌翻译
多参数磁共振成像(MPMRI)在检测前列腺癌病变中的作用越来越大。因此,解释这些扫描的医学专业人员通过使用计算机辅助检测系统来减少人为错误的风险。但是,系统实施中使用的各种算法产生了不同的结果。在这里,我们研究了每个前列腺区域的最佳机器学习分类器。我们还发现了明显的功能,以阐明模型的分类原理。在提供的数据中,我们收集并增强了T2加权图像和明显的扩散系数MAP图像,以首先通过三阶统计特征提取作为机器学习分类器的输入。对于我们的深度学习分类器,我们使用卷积神经网(CNN)体系结构进行自动提取和分类。通过显着映射以了解内部的分类机制,可以改善CNN结果的可解释性。最终,我们得出的结论是,有效检测周围和前纤维肌间基质(AS)病变更多地取决于统计分布特征,而过渡区(TZ)的病变更多地取决于纹理特征。合奏算法最适合PZ和TZ区域,而CNN在AS区域中最好。这些分类器可用于验证放射科医生的预测,并减少怀疑患有前列腺癌的患者的阅读差异。还可以进一步研究这项研究中报告的显着特征,以更好地了解使用mpMRI的前列腺病变的隐藏特征和生物标志物。
translated by 谷歌翻译
前列腺癌是男性癌症死亡的最常见原因之一。对非侵入性和准确诊断方法的需求不断增长,促进目前在临床实践中的标准前列腺癌风险评估。尽管如此,从多游幂磁共振图像中开发前列腺癌诊断中的计算机辅助癌症诊断仍然是一个挑战。在这项工作中,我们提出了一种新的深度学习方法,可以通过构建两阶段多数量多流卷积神经网络(CNN)基于架构架构的相应磁共振图像中的前列腺病变自动分类。在不实现复杂的图像预处理步骤或第三方软件的情况下,我们的框架在接收器操作特性(ROC)曲线值为0.87的接收器下实现了该区域的分类性能。结果表现出大部分提交的方法,并分享了普罗妥克斯挑战组织者报告的最高价值。我们拟议的基于CNN的框架反映了辅助前列腺癌中的医学图像解释并减少不必要的活组织检查的可能性。
translated by 谷歌翻译
机器学习和计算机视觉技术近年来由于其自动化,适合性和产生惊人结果的能力而迅速发展。因此,在本文中,我们调查了2014年至2022年之间发表的关键研究,展示了不同的机器学习算法研究人员用来分割肝脏,肝肿瘤和肝脉管结构的研究。我们根据感兴趣的组织(肝果,肝肿瘤或肝毒剂)对被调查的研究进行了划分,强调了同时解决多个任务的研究。此外,机器学习算法被归类为受监督或无监督的,如果属于某个方案的工作量很大,则将进一步分区。此外,对文献和包含上述组织面具的网站发现的不同数据集和挑战进行了彻底讨论,强调了组织者的原始贡献和其他研究人员的贡献。同样,在我们的评论中提到了文献中过度使用的指标,这强调了它们与手头的任务的相关性。最后,强调创新研究人员应对需要解决的差距的关键挑战和未来的方向,例如许多关于船舶分割挑战的研究的稀缺性以及为什么需要早日处理他们的缺席。
translated by 谷歌翻译
目的:为全身CT设计多疾病分类扫描使用自动提取标签从放射科文reports.Materials和方法三个不同的器官系统:这项回顾性研究共有12,092例患者(平均年龄57 + - 18; 6172名妇女)包括对模型开发和测试(2012-2017自)。基于规则的算法被用来从12,092患者提取13667身体CT扫描19,225疾病的标签。使用三维DenseVNet,三个器官系统是分段的:肺和胸膜;肝胆;和肾脏及输尿管。对于每个器官,三维卷积神经网络分类没有明显的疾病与四种常见疾病为跨越所有三个模型总共15个不同的标签。测试是在相对于2875个手动导出的参考标签2158个CT体积的子集从2133名患者( - ; 1079名妇女18,平均年龄58 +)进行。性能报告为曲线(AUC)与通过方法德朗95%置信区间下接收器的操作特性的区域。结果:提取的标签说明书验证确认91%横跨15个不同的唱片公司99%的准确率。对于肺和胸膜标签的AUC分别为:肺不张0.77(95%CI:0.74,0.81),结节0.65(0.61,0.69),肺气肿0.89(0.86,0.92),积液0.97(0.96,0.98),并且没有明显的疾病0.89( 0.87,0.91)。对于肝和胆囊的AUC分别为:肝胆钙化0.62(95%CI:0.56,0.67),病变0.73(0.69,0.77),扩张0.87(0.84,0.90),脂肪0.89(0.86,0.92),并且没有明显的疾病0.82( 0.78,0.85)。对于肾脏及输尿管的AUC分别为:石0.83(95%CI:0.79,0.87),萎缩0.92(0.89,0.94),病变0.68(0.64,0.72),囊肿0.70(0.66,0.73),并且没有明显的疾病0.79(0.75 ,0.83)。结论:弱监督深度学习模型能够在多器官系统不同的疾病分类。
translated by 谷歌翻译
尽管近年来从CT/MRI扫描中自动腹部多器官分割取得了很大进展,但由于缺乏各种临床方案的大规模基准,对模型的能力的全面评估受到阻碍。收集和标记3D医学数据的高成本的限制,迄今为止的大多数深度学习模型都由具有有限数量的感兴趣或样品器官的数据集驱动,这仍然限制了现代深层模型的力量提供各种方法的全面且公平的估计。为了减轻局限性,我们提出了AMO,这是一个大规模,多样的临床数据集,用于腹部器官分割。 AMOS提供了从多中心,多供应商,多模式,多相,多疾病患者收集的500 CT和100次MRI扫描,每个患者均具有15个腹部器官的体素级注释,提供了具有挑战性的例子,并提供了挑战性的例子和测试结果。在不同的目标和场景下研究健壮的分割算法。我们进一步基准了几种最先进的医疗细分模型,以评估此新挑战性数据集中现有方法的状态。我们已公开提供数据集,基准服务器和基线,并希望激发未来的研究。信息可以在https://amos22.grand-challenge.org上找到。
translated by 谷歌翻译
脑转移经常发生在转移性癌症的患者中。早期和准确地检测脑转移对于放射治疗的治疗计划和预后至关重要。为了提高深入学习的脑转移检测性能,提出了一种称为体积级灵敏度特异性(VSS)的定制检测损失,该损失是单个转移检测灵敏度和(子)体积水平的特异性。作为敏感性和精度始终在转移水平中始终是折射率,可以通过调节VSS损耗中的重量而无需骰子分数系数进行分段转移来实现高精度或高精度。为了减少被检测为假阳性转移的转移样结构,提出了一种时间的现有量作为神经网络的额外输入。我们提出的VSS损失提高了脑转移检测的敏感性,将灵敏度提高了86.7%至95.5%。或者,它将精度提高了68.8%至97.8%。随着额外的时间现有量,在高灵敏度模型中,约45%的假阳性转移减少,高特异性模型的精度达到99.6%。所有转移的平均骰子系数约为0.81。随着高灵敏度和高特异性模型的集合,平均每位患者的1.5个假阳性转移需要进一步检查,而大多数真正的阳性转移确认。该集合学习能够区分从需要特殊专家审查或进一步跟进的转移候选人的高信心真正的阳性转移,特别适合实际临床实践中专家支持的要求。
translated by 谷歌翻译
对脑外伤(TBI)患者的准确预后很难为治疗,患者管理和长期护理提供信息至关重要。年龄,运动和学生反应性,缺氧和低血压以及计算机断层扫描(CT)的放射学发现等患者特征已被确定为TBI结果预测的重要变量。 CT是临床实践中选择的急性成像方式,因为其获取速度和广泛的可用性。但是,这种方式主要用于定性和半定量评估,例如马歇尔评分系统,该系统容易受到主观性和人为错误。这项工作探讨了使用最先进的,深度学习的TBI病变分割方法从常规获得的医院入院CT扫描中提取的成像生物标志物的预测能力。我们使用病变体积和相应的病变统计作为扩展TBI结果预测模型的输入。我们将我们提出的功能的预测能力与马歇尔分数进行比较,并与经典的TBI生物标志物配对。我们发现,在预测不利的TBI结果时,自动提取的定量CT功能的性能与Marshall分数相似或更好。利用自动地图集对齐,我们还确定额叶外病变是不良预后的重要指标。我们的工作可能有助于更好地理解TBI,并提供有关如何使用自动化神经影像分析来改善TBI后预测的新见解。
translated by 谷歌翻译
本文提出了第二版的头部和颈部肿瘤(Hecktor)挑战的概述,作为第24届医学图像计算和计算机辅助干预(Miccai)2021的卫星活动。挑战由三个任务组成与患有头颈癌(H&N)的患者的PET / CT图像的自动分析有关,专注于oropharynx地区。任务1是FDG-PET / CT图像中H&N主肿瘤肿瘤体积(GTVT)的自动分割。任务2是来自同一FDG-PET / CT的进展自由生存(PFS)的自动预测。最后,任务3与任务2的任务2与参与者提供的地面真理GTVT注释相同。这些数据从六个中心收集,总共325个图像,分为224个培训和101个测试用例。通过103个注册团队和448个结果提交的重要参与,突出了对挑战的兴趣。在第一任务中获得0.7591的骰子相似度系数(DSC),分别在任务2和3中的0.7196和0.6978的一致性指数(C-Index)。在所有任务中,发现这种方法的简单性是确保泛化性能的关键。 PFS预测性能在任务2和3中的比较表明,提供GTVT轮廓对于实现最佳结果,这表明可以使用完全自动方法。这可能避免了对GTVT轮廓的需求,用于可重复和大规模的辐射瘤研究的开头途径,包括千元潜在的受试者。
translated by 谷歌翻译