可变形的图像注册,估计不同图像之间的空间转换,是医学成像中的重要任务。许多先前的研究都使用基于学习的方法进行多阶段注册来执行3D图像注册以提高性能。但是,多阶段方法的性能受到不受单个空间尺度上复杂运动的接收场的大小的限制。我们提出了一个新的注册网络,结合了递归网络体系结构和相互注意机制,以克服这些局限性。与最先进的深度学习方法相比,基于递归结构的我们的网络达到了肺计算机断层扫描(CT)数据集的最高精度(肺部的骰子分数为92 \%,肺平均表面距离为3.8mm ),这是腹部CT数据集中最准确的结果之一,具有9个大小的器官(骰子得分为55 \%,平均表面距离为7.8mm)。我们还表明,添加3个递归网络足以达到最新结果,而没有明显增加推理时间。
translated by 谷歌翻译
迄今为止,迄今为止,众所周知,对广泛的互补临床相关任务进行了全面比较了医学图像登记方法。这限制了采用研究进展,以防止竞争方法的公平基准。在过去五年内已经探讨了许多新的学习方法,但优化,建筑或度量战略的问题非常适合仍然是开放的。 Learn2reg涵盖了广泛的解剖学:脑,腹部和胸部,方式:超声波,CT,MRI,群体:患者内部和患者内部和监督水平。我们为3D注册的培训和验证建立了较低的入境障碍,这帮助我们从20多个独特的团队中汇编了65多个单独的方法提交的结果。我们的互补度量集,包括稳健性,准确性,合理性和速度,使得能够独特地位了解当前的医学图像登记现状。进一步分析监督问题的转移性,偏见和重要性,主要是基于深度学习的方法的优越性,并将新的研究方向开放到利用GPU加速的常规优化的混合方法。
translated by 谷歌翻译
最近,已广泛研究了基于深度学习的方法,以进行可变形的图像注册任务。但是,大多数努力将复合图像表示形式直接映射到通过卷积神经网络的空间转换,而忽略了其捕获空间对应关系的有限能力。另一方面,变压器可以更好地表征与注意机制的空间关系,其远程依赖性可能对注册任务有害,在这种情况下,距离太大的体素不太可能是相应的对。在这项研究中,我们提出了一个新型的变形器模块,以及用于可变形图像配准任务的多尺度框架。变形器模块旨在通过将位移矢量预测作为几个碱基的加权总和来促进从图像表示到空间转换的映射。借助多尺度框架以粗略的方式预测位移字段,与传统和基于学习的方法相比,可以实现卓越的性能。进行了两个公共数据集的全面实验,以证明所提出的变形器模块以及多规模框架的有效性。
translated by 谷歌翻译
在过去的十年中,卷积神经网络(Convnets)主导了医学图像分析领域。然而,发现脉搏的性能仍然可以受到它们无法模拟图像中体素之间的远程空间关系的限制。最近提出了众多视力变压器来解决哀悼缺点,在许多医学成像应用中展示最先进的表演。变压器可以是用于图像配准的强烈候选者,因为它们的自我注意机制能够更精确地理解移动和固定图像之间的空间对应。在本文中,我们呈现透射帧,一个用于体积医学图像配准的混合变压器-Cromnet模型。我们还介绍了三种变速器的变形,具有两个散晶变体,确保了拓扑保存的变形和产生良好校准的登记不确定性估计的贝叶斯变体。使用来自两个应用的体积医学图像的各种现有的登记方法和变压器架构进行广泛验证所提出的模型:患者间脑MRI注册和幻影到CT注册。定性和定量结果表明,传输和其变体导致基线方法的实质性改进,展示了用于医学图像配准的变压器的有效性。
translated by 谷歌翻译
可变形的图像注册对于许多医学图像分析是基础。准确图像注册的关键障碍在于图像外观变化,例如纹理,强度和噪声的变化。这些变化在医学图像中很明显,尤其是在经常使用注册的大脑图像中。最近,使用深神经网络的基于深度学习的注册方法(DLR)显示了计算效率,比基于传统优化的注册方法(ORS)快几个数量级。 DLR依靠一个全球优化的网络,该网络经过一组培训样本训练以实现更快的注册。但是,DLR倾向于无视ORS固有的目标对特异性优化,因此已经降低了对测试样品变化的适应性。这种限制对于注册出现较大的医学图像的限制是严重的,尤其是因为很少有现有的DLR明确考虑了外观的变化。在这项研究中,我们提出了一个外观调整网络(AAN),以增强DLR对外观变化的适应性。当我们集成到DLR中时,我们的AAN提供了外观转换,以减少注册过程中的外观变化。此外,我们提出了一个由解剖结构约束的损失函数,通过该函数,我们的AAN产生了解剖结构的转化。我们的AAN被目的设计为容易插入广泛的DLR中,并且可以以无监督和端到端的方式进行合作培训。我们用三个最先进的DLR评估了3D脑磁共振成像(MRI)的三个公共数据集(MRI)。结果表明,我们的AAN始终提高了现有的DLR,并且在注册精度上优于最先进的OR,同时向现有DLR增加了分数计算负载。
translated by 谷歌翻译
运动估计是用于评估目标器官解剖学和功能的动态医学图像处理的基本步骤。然而,通过评估局部图像相似性通过评估局部图像相似性优化运动场的基于图像的运动估计方法,易于产生令人难以置信的估计,尤其是在大运动的情况下。在这项研究中,我们提供了一种新颖的稀疏密度(DSD)的运动估计框架,其包括两个阶段。在第一阶段,我们处理原始密集图像以提取稀疏地标以表示目标器官解剖拓扑,并丢弃对运动估计不必要的冗余信息。为此目的,我们介绍一个无监督的3D地标检测网络,以提取用于目标器官运动估计的空间稀疏但代表性的地标。在第二阶段,我们从两个不同时间点的两个图像的提取稀疏地标的稀疏运动位移得出。然后,我们通过将稀疏地标位移突出回致密图像域,呈现运动重建网络来构造运动场。此外,我们从我们的两级DSD框架中使用估计的运动场作为初始化,并提高轻量级且有效的迭代优化中的运动估计质量。我们分别评估了两种动态医学成像任务的方法,分别为模型心脏运动和肺呼吸运动。与现有的比较方法相比,我们的方法产生了出色的运动估计精度。此外,广泛的实验结果表明,我们的解决方案可以提取良好代表性解剖标志,而无需手动注释。我们的代码在线公开提供。
translated by 谷歌翻译
We present VoxelMorph, a fast learning-based framework for deformable, pairwise medical image registration. Traditional registration methods optimize an objective function for each pair of images, which can be time-consuming for large datasets or rich deformation models. In contrast to this approach, and building on recent learning-based methods, we formulate registration as a function that maps an input image pair to a deformation field that aligns these images. We parameterize the function via a convolutional neural network (CNN), and optimize the parameters of the neural network on a set of images. Given a new pair of scans, VoxelMorph rapidly computes a deformation field by directly evaluating the function. In this work, we explore two different training strategies. In the first (unsupervised) setting, we train the model to maximize standard image matching objective functions that are based on the image intensities. In the second setting, we leverage auxiliary segmentations available in the training data. We demonstrate that the unsupervised model's accuracy is comparable to state-of-the-art methods, while operating orders of magnitude faster. We also show that VoxelMorph trained with auxiliary data improves registration accuracy at test time, and evaluate the effect of training set size on registration. Our method promises to speed up medical image analysis and processing pipelines, while facilitating novel directions in learning-based registration and its applications. Our code is freely available at http://voxelmorph.csail.mit.edu.
translated by 谷歌翻译
脑MRI图像的登记需要解决变形领域,这对于对准复杂的脑组织,例如皮质核等,这是极其困难的现有努力,该努力在具有微小运动的中间子场中分解目标变形领域,即逐步登记阶段或较低的分辨率,即全尺寸变形场的粗析估计。在本文中,我们认为这些努力不是相互排斥的,并为普通和粗良好的方式同时提出统一的脑MRI登记统一框架。具体地,在双编码器U-Net上构建,定制移动的MRI对被编码和解码成从粗略到精细的多尺度变形子字段。每个解码块包含两个提出的新颖模块:i)在变形场积分(DFI)中,计算单个集成子字段,翘曲,其等同于来自所有先前解码块的子字段逐渐翘曲,并且II)非刚性特征融合(NFF),固定移动对的特征由DFI集成子场对齐,然后融合以预测更精细的子场。利用DFI和NFF,目标变形字段被修改为多尺度子场,其中较粗糙的字段缓解了更精细的一个和更精细的字段的估计,以便构成以前粗糙的较粗糙的那些错位。私人和公共数据集的广泛和全面的实验结果展示了脑MRI图像的优越的登记性能,仅限于逐步登记和粗略估计,平均骰子的粗略估计数量在最多8%上升。
translated by 谷歌翻译
大多数基于深度学习(DL)的可变形图像登记方法使用卷积神经网络(CNN)来估计移动和固定图像对的位移字段。但是,这要求CNN中的卷积内核不仅从输入中提取强度特征,而且还了解图像坐标系。我们认为,后者的任务对传统CNN来说是具有挑战性的,从而限制了他们在注册任务中的性能。为了解决此问题,我们首先介绍坐标翻译器,坐标转换器是一个可区分的模块,该模块识别固定和移动图像之间的匹配功能,并在不需要训练的情况下输出其坐标对应关系。它卸载了了解CNN的图像坐标系的负担,从而使它们可以专注于特征提取。然后,我们提出了一个新型的可变形注册网络IM2Grid,该网络使用多个坐标转换器与从CNN编码中提取的层次结构特征,并以粗略的方式输出变形字段。我们将IM2Grid与无监督的3D磁共振图像注册的最新DL和非DL方法进行了比较。我们的实验表明,IM2Grid在定性和定量上都优于这些方法。
translated by 谷歌翻译
注册在医学图像分析中起着重要作用。已经研究了用于医学图像注册的深度学习方法,该方法利用卷积神经网络(CNN)有效地从一对图像中回归了密集的变形场。但是,CNN的限制是其提取语义上有意义的内部和图像间空间对应关系的能力,这对于准确的图像注册至关重要。这项研究提出了一个新型的端到端深度学习框架,用于无监督的仿射和差异可变形的注册,称为acsgregnet,该框架集成了一个交叉意识模块,用于建立图像间的特征对应关系和一个自我主张模块,以进行内部内部的模块图像解剖结构意识到。两个注意模块都建立在变压器编码器上。每个注意模块的输出分别被馈送到解码器以生成速度场。我们进一步引入了一个封闭式的融合模块,以融合两个速度场。然后将融合速度场集成到密集的变形场。广泛的实验是在腰椎CT图像上进行的。一旦训练了模型,就可以一枪注册一对看不见的腰椎。通过450对椎CT数据进行了评估,我们的方法的平均骰子为0.963,平均距离误差为0.321mm,比最先进的(SOTA)更好。
translated by 谷歌翻译
由于其极端的长距离建模能力,基于视觉变压器的网络在可变形图像注册中变得越来越流行。但是,我们认为,5层卷积U-NET的接受场足以捕获准确的变形而无需长期依赖性。因此,这项研究的目的是研究与现代变压器的方法相比,将基于U-NET的方法用于医学图像注册时是否已过时。为此,我们通过将平行的卷积块嵌入香草U-NET以增强有效的接受场来提出一个大核U-NET(LKU-NET)。在公共3D IXI Brain Dataset上,用于基于ATLAS的注册,我们表明,香草U-NET的性能已经与基于最新的变压器网络(例如Transmorph)相提并论,并且提出的LKU-NET仅使用其参数的1.12%和其多添加操作的10.8%,优于Transmorph。我们进一步评估了MICCAI Learn2Reg 2021挑战数据集中的LKU-NET,以进行主题间注册,我们的LKU-NET在此数据集中也优于TransMorph,并且在此工作提交后,在公共排行榜上排名第一。只有对香草U-NET的适度修改,我们表明U-NET可以在基于主体间和基于ATLAS的3D医疗图像注册上胜过基于变压器的体系结构。代码可在https://github.com/xi-jia/lku-net上找到。
translated by 谷歌翻译
Deformable image registration, i.e., the task of aligning multiple images into one coordinate system by non-linear transformation, serves as an essential preprocessing step for neuroimaging data. Recent research on deformable image registration is mainly focused on improving the registration accuracy using multi-stage alignment methods, where the source image is repeatedly deformed in stages by a same neural network until it is well-aligned with the target image. Conventional methods for multi-stage registration can often blur the source image as the pixel/voxel values are repeatedly interpolated from the image generated by the previous stage. However, maintaining image quality such as sharpness during image registration is crucial to medical data analysis. In this paper, we study the problem of anti-blur deformable image registration and propose a novel solution, called Anti-Blur Network (ABN), for multi-stage image registration. Specifically, we use a pair of short-term registration and long-term memory networks to learn the nonlinear deformations at each stage, where the short-term registration network learns how to improve the registration accuracy incrementally and the long-term memory network combines all the previous deformations to allow an interpolation to perform on the raw image directly and preserve image sharpness. Extensive experiments on both natural and medical image datasets demonstrated that ABN can accurately register images while preserving their sharpness. Our code and data can be found at https://github.com/anonymous3214/ABN
translated by 谷歌翻译
计算机断层扫描(CT)图像中腹部器官的自动分割可以支持放射治疗和图像引导的手术工作流程。这种自动解决方案的开发仍然挑战,主要是由于CT图像中的复杂器官相互作用和模糊边界。为了解决这些问题,我们专注于有效的空间上下文建模和显式边缘分段前提。因此,我们提出了一个3D网络,其中四个主要组件训练了端到端,包括共享编码器,边缘检测器,具有边缘跳过连接的解码器(ESC)和复制特征传播头(RFP-head)。为了捕获宽范围的空间依赖性,RFP-磁头通过以有效的切片方式配制的定向非循环图(DAG)传播和收集局部特征,以高效的切片方式,关于图像单元的空间排列。为了利用边缘信息,边缘探测器通过利用边缘监控来学习专门针对语义分割专门调整的边缘知识。然后,ESC通过多级解码器特征聚合边缘知识,以学习判别特征的层次结构明确地建模器官内部和边缘之间的互补性进行分割。我们对具有八个带电器官的两个挑战性腹部CT数据集进行了广泛的实验。实验结果表明,所提出的网络优于几种最先进的模型,特别是对于小而复杂的结构(胆囊,食道,胃,胰腺和十二指肠)的分割。该代码将公开。
translated by 谷歌翻译
可变形的注册包括找到两个不同图像之间的最佳密集对应。许多算法已发表,但临床应用难以解决优化问题所需的高计算时间。通过利用GPU计算和学习过程,深入学习超越了这种限制。然而,许多深度学习方法不考虑经典算法尊重的理想性质。在本文中,我们呈现MICS,一种用于医学成像注册的新型深度学习算法。由于注册是一个不良问题,我们将我们的算法集中在不同性质的方面:逆一致性,对称性和方向节约。我们还将我们的算法与多步策略组合以改进和改进变形网格。虽然许多方法向脑MRI应用了登记,但我们探讨了更具挑战性的身体定位:腹部CT。最后,我们在Learn2Reg挑战期间使用的数据集中评估了我们的方法,允许与已发布的方法进行公平比较。
translated by 谷歌翻译
对医学图像的器官或病变的准确分割对于可靠的疾病和器官形态计量学的可靠诊断至关重要。近年来,卷积编码器解码器解决方案在自动医疗图像分割领域取得了重大进展。由于卷积操作中的固有偏见,先前的模型主要集中在相邻像素形成的局部视觉提示上,但无法完全对远程上下文依赖性进行建模。在本文中,我们提出了一个新型的基于变压器的注意力指导网络,称为Transattunet,其中多层引导注意力和多尺度跳过连接旨在共同增强语义分割体系结构的性能。受到变压器的启发,具有变压器自我注意力(TSA)和全球空间注意力(GSA)的自我意识注意(SAA)被纳入Transattunet中,以有效地学习编码器特征之间的非本地相互作用。此外,我们还使用解码器块之间的其他多尺度跳过连接来汇总具有不同语义尺度的上采样功能。这样,多尺度上下文信息的表示能力就可以增强以产生判别特征。从这些互补组件中受益,拟议的Transattunet可以有效地减轻卷积层堆叠和连续采样操作引起的细节损失,最终提高医学图像的细分质量。来自不同成像方式的多个医疗图像分割数据集进行了广泛的实验表明,所提出的方法始终优于最先进的基线。我们的代码和预培训模型可在以下网址找到:https://github.com/yishuliu/transattunet。
translated by 谷歌翻译
视觉变形金刚(VIT)S表现出可观的全球和本地陈述的自我监督学习表现,可以转移到下游应用程序。灵感来自这些结果,我们介绍了一种新的自我监督学习框架,具有用于医学图像分析的定制代理任务。具体而言,我们提出:(i)以新的3D变压器为基础的型号,被称为往返变压器(Swin Unet),具有分层编码器,用于自我监督的预训练; (ii)用于学习人类解剖学潜在模式的定制代理任务。我们展示了来自各种身体器官的5,050个公共可用的计算机断层扫描(CT)图像的提出模型的成功预培训。通过微调超出颅穹窿(BTCV)分割挑战的预先调整训练模型和来自医疗细分牌组(MSD)数据集的分割任务,通过微调训练有素的模型来验证我们的方法的有效性。我们的模型目前是MSD和BTCV数据集的公共测试排行榜上的最先进的(即第1号)。代码:https://monai.io/research/swin-unetr.
translated by 谷歌翻译
Automated detecting lung infections from computed tomography (CT) data plays an important role for combating COVID-19. However, there are still some challenges for developing AI system. 1) Most current COVID-19 infection segmentation methods mainly relied on 2D CT images, which lack 3D sequential constraint. 2) Existing 3D CT segmentation methods focus on single-scale representations, which do not achieve the multiple level receptive field sizes on 3D volume. 3) The emergent breaking out of COVID-19 makes it hard to annotate sufficient CT volumes for training deep model. To address these issues, we first build a multiple dimensional-attention convolutional neural network (MDA-CNN) to aggregate multi-scale information along different dimension of input feature maps and impose supervision on multiple predictions from different CNN layers. Second, we assign this MDA-CNN as a basic network into a novel dual multi-scale mean teacher network (DM${^2}$T-Net) for semi-supervised COVID-19 lung infection segmentation on CT volumes by leveraging unlabeled data and exploring the multi-scale information. Our DM${^2}$T-Net encourages multiple predictions at different CNN layers from the student and teacher networks to be consistent for computing a multi-scale consistency loss on unlabeled data, which is then added to the supervised loss on the labeled data from multiple predictions of MDA-CNN. Third, we collect two COVID-19 segmentation datasets to evaluate our method. The experimental results show that our network consistently outperforms the compared state-of-the-art methods.
translated by 谷歌翻译
我们介绍了一种基于梯度下降的图像登记网络(Gradirn),用于通过在深度学习框架中嵌入基于梯度的迭代能量最小化来学习可变形的图像配准。传统的图像登记算法通常使用迭代能量 - 最小化优化来查找一对图像之间的最佳变换,这在需要许多迭代时是耗时的。相比之下,基于学习的方法通过训练深神经网络来迁移这一昂贵的迭代优化,以便通过快速网络向前通过训练后可以实现一对图像的登记。通过图像重建技术的成功激励,与迭代变分能优化的数学结构相结合的深度学习,我们基于多分辨率梯度下降能量最小化制定新颖的登记网络。网络的前进通过通过卷积神经网络(CNN)参数化的显式图像相容梯度步骤和用于固定数量的迭代的卷积神经网络(CNN)。我们使用自我差异化来导出显式图像异化梯度W.r.t.的前向计算图。变换,因此可以在没有复杂和易于出错的梯度衍生的情况下使用任意图像相似度量和转换模型。我们证明,这种方法通过使用2D心动MR图像和3D脑MR图像使用更少的学习参数,在使用更少的学习参数时实现最先进的登记性能。
translated by 谷歌翻译
3D牙齿分割是计算机辅助牙齿诊断和治疗的先决条件。但是,将所有牙齿区域分割为主观且耗时。最近,基于深度学习的细分方法产生了令人信服的结果并减少了手动注释的工作,但是它需要大量的基础真相进行培训。据我们所知,3D分割研究几乎没有牙齿数据。在本文中,我们建立了带有牙齿金标准的完全注释的锥束计算机断层扫描数据集。该数据集包含22卷(7363片),并带有经验丰富的射线照相解释者注释的精细牙齿标签。为了确保相对的数据采样分布,数据方差包括在牙齿中,包括缺失的牙齿和牙齿修复。在此数据集上评估了几种最新的分割方法。之后,我们进一步总结并应用了一系列基于3D注意的UNET变体以分割牙齿。这项工作为牙齿体积分割任务提供了新的基准。实验证据证明,3D UNET结构的注意力模块增强了牙齿区域中的反应,并抑制背景和噪声的影响。 3D UNET使用SKNET注意模块实现了最佳性能,分别为88.04 \%骰子和78.71 \%IOU。基于注意力的UNET框架的表现优于Ctooth数据集上的其他最新方法。代码库和数据集已发布。
translated by 谷歌翻译
深度学习已被广​​泛用于医学图像分割,并且录制了录制了该领域深度学习的成功的大量论文。在本文中,我们使用深层学习技术对医学图像分割的全面主题调查。本文进行了两个原创贡献。首先,与传统调查相比,直接将深度学习的文献分成医学图像分割的文学,并为每组详细介绍了文献,我们根据从粗略到精细的多级结构分类目前流行的文献。其次,本文侧重于监督和弱监督的学习方法,而不包括无监督的方法,因为它们在许多旧调查中引入而且他们目前不受欢迎。对于监督学习方法,我们分析了三个方面的文献:骨干网络的选择,网络块的设计,以及损耗功能的改进。对于虚弱的学习方法,我们根据数据增强,转移学习和交互式分割进行调查文献。与现有调查相比,本调查将文献分类为比例不同,更方便读者了解相关理由,并将引导他们基于深度学习方法思考医学图像分割的适当改进。
translated by 谷歌翻译