消耗的湖冰是气候变化指标,就像海平面上升或冰川静修一样。监测冰冰物候(LIP)是有用的,因为长期冻结和融化模式充当了哨兵,以了解区域和全球气候变化。我们报告了一项针对瑞士奥伯伦加丁地区的研究,那里有几个中小型山区湖泊。我们从光学卫星图像中观察到唇部事件,例如冻结,分手和冰盖持续时间(2000-2020)。我们通过对这些高山湖泊的湖泊冰层估算有监督的机器学习的空间分辨图来分析MODIS图像的时间序列。为了训练分类器,我们依靠基于网络摄像头图像手动注释的参考数据。从冰图中,我们得出了长期的唇部趋势。由于网络摄像头数据仅适用于两个冬季,因此我们与操作MODIS和VIIRS SNOW PRODUCTS进行了交叉检查结果。我们发现,对于湖泊和西瓦普拉纳(Lakes Sils)和Silvaplana,每年的完全冻结持续时间为-0.76和-0.89天。此外,我们观察到唇部趋势与在附近气象站测得的气候数据的合理相关性。我们注意到,平均冬季空气温度与冻结持续时间和分手事件以及与冻结事件的正相关性具有负相关性。此外,我们观察到在冬季,阳光与冻结持续时间和分手事件之间存在很强的负相关性。
translated by 谷歌翻译
Fusing satellite imagery acquired with different sensors has been a long-standing challenge of Earth observation, particularly across different modalities such as optical and Synthetic Aperture Radar (SAR) images. Here, we explore the joint analysis of imagery from different sensors in the light of representation learning: we propose to learn a joint embedding of multiple satellite sensors within a deep neural network. Our application problem is the monitoring of lake ice on Alpine lakes. To reach the temporal resolution requirement of the Swiss Global Climate Observing System (GCOS) office, we combine three image sources: Sentinel-1 SAR (S1-SAR), Terra MODIS, and Suomi-NPP VIIRS. The large gaps between the optical and SAR domains and between the sensor resolutions make this a challenging instance of the sensor fusion problem. Our approach can be classified as a late fusion that is learned in a data-driven manner. The proposed network architecture has separate encoding branches for each image sensor, which feed into a single latent embedding. I.e., a common feature representation shared by all inputs, such that subsequent processing steps deliver comparable output irrespective of which sort of input image was used. By fusing satellite data, we map lake ice at a temporal resolution of < 1.5 days. The network produces spatially explicit lake ice maps with pixel-wise accuracies > 91% (respectively, mIoU scores > 60%) and generalises well across different lakes and winters. Moreover, it sets a new state-of-the-art for determining the important ice-on and ice-off dates for the target lakes, in many cases meeting the GCOS requirement.
translated by 谷歌翻译
卫星遥感提供了一种具有成本效益的概要洪水监测的解决方案,卫星衍生的洪水图为传统上使用的数值洪水淹没模型提供了一种计算有效的替代方法。尽管卫星碰巧涵盖正在进行的洪水事件时确实提供了及时的淹没信息,但它们受其时空分辨率的限制,因为它们在各种规模上动态监测洪水演变的能力。不断改善对新卫星数据源的访问以及大数据处理功能,就此问题的数据驱动解决方案而言,已经解锁了前所未有的可能性。具体而言,来自卫星的数据融合,例如哥白尼前哨,它们具有很高的空间和低时间分辨率,以及来自NASA SMAP和GPM任务的数据,它们的空间较低,但时间较高的时间分辨率可能会导致高分辨率的洪水淹没在A处的高分辨率洪水。每日规模。在这里,使用Sentinel-1合成孔径雷达和各种水文,地形和基于土地利用的预测因子衍生出的洪水淹没图对卷积神经网络进行了训练,以预测高分辨率的洪水泛滥概率图。使用Sentinel-1和Sentinel-2衍生的洪水面罩,评估了UNET和SEGNET模型架构的性能,分别具有95%的信心间隔。精确召回曲线(PR-AUC)曲线下的区域(AUC)被用作主要评估指标,这是由于二进制洪水映射问题中类固有的不平衡性质,最佳模型提供了PR-AUC 0.85。
translated by 谷歌翻译
以知情方式监测和管理地球林是解决生物多样性损失和气候变化等挑战的重要要求。虽然森林评估的传统或空中运动提供了在区域一级分析的准确数据,但将其扩展到整个国家,以外的高度分辨率几乎不可能。在这项工作中,我们提出了一种贝叶斯深度学习方法,以10米的分辨率为全国范围的森林结构变量,使用自由可用的卫星图像作为输入。我们的方法将Sentinel-2光学图像和Sentinel-1合成孔径雷达图像共同变换为五种不同的森林结构变量的地图:95th高度百分位,平均高度,密度,基尼系数和分数盖。我们从挪威的41个机载激光扫描任务中培训和测试我们的模型,并证明它能够概括取消测试区域,从而达到11%和15%之间的归一化平均值误差,具体取决于变量。我们的工作也是第一个提出贝叶斯深度学习方法的工作,以预测具有良好校准的不确定性估计的森林结构变量。这些提高了模型的可信度及其适用于需要可靠的信心估计的下游任务,例如知情决策。我们提出了一组广泛的实验,以验证预测地图的准确性以及预测的不确定性的质量。为了展示可扩展性,我们为五个森林结构变量提供挪威地图。
translated by 谷歌翻译
陆地温度(LST)是监控土地面过程时的关键参数。然而,云污染和空间和时间分辨率之间的权衡大大妨碍了对高质量的热红外(TIR)遥感数据的访问。尽管采取了巨大的努力来解决这些困境,但仍然难以通过并发空间完整性和高时空分辨率产生LST估计。陆地表面模型(LSM)可用于模拟高度的时间分辨率的Genpless LST,但这通常具有低空间分辨率。在本文中,我们向卫星观察和LSM模拟LST数据提供了一个集成的温度融合框架,以通过60米的空间分辨率和半小时时间分辨率映射Gapless LST。全局线性模型(GLOLM)模型和昼夜陆地表面温度周期(DTC)模型分别作为预处理步骤进行传感器和不同LST数据之间的时间归一化。然后使用基于滤波器的时空集成融合模型融合Landsat LST,适度分辨率成像光谱仪(MODIS)LST和社区土地模型5.0(CLM 5.0)-SIMUTION LST。在一个城市主导地区(中国武汉市)和自然主导地区(中国海河流域)实施了评估,在准确性,空间可变性和日颞动力学方面。结果表明,熔融LST与实际LANDSAT LST数据(原位LST测量)高于Pearson相关系数,在0.94(0.97-0.99)方面,平均绝对误差为0.71-0.98k(0.82-3.17 k )和根平均误差为0.97-1.26 k(1.09-3.97 k)。
translated by 谷歌翻译
Crop phenology is crucial information for crop yield estimation and agricultural management. Traditionally, phenology has been observed from the ground; however Earth observation, weather and soil data have been used to capture the physiological growth of crops. In this work, we propose a new approach for the within-season phenology estimation for cotton at the field level. For this, we exploit a variety of Earth observation vegetation indices (derived from Sentinel-2) and numerical simulations of atmospheric and soil parameters. Our method is unsupervised to address the ever-present problem of sparse and scarce ground truth data that makes most supervised alternatives impractical in real-world scenarios. We applied fuzzy c-means clustering to identify the principal phenological stages of cotton and then used the cluster membership weights to further predict the transitional phases between adjacent stages. In order to evaluate our models, we collected 1,285 crop growth ground observations in Orchomenos, Greece. We introduced a new collection protocol, assigning up to two phenology labels that represent the primary and secondary growth stage in the field and thus indicate when stages are transitioning. Our model was tested against a baseline model that allowed to isolate the random agreement and evaluate its true competence. The results showed that our model considerably outperforms the baseline one, which is promising considering the unsupervised nature of the approach. The limitations and the relevant future work are thoroughly discussed. The ground observations are formatted in an ready-to-use dataset and will be available at https://github.com/Agri-Hub/cotton-phenology-dataset upon publication.
translated by 谷歌翻译
农作物残留物燃烧是世界许多地方的空气污染的主要来源,尤其是南亚。政策制定者,从业人员和研究人员都投资了衡量影响和制定干预措施以减少燃烧。但是,测量燃烧的影响或干预措施的有效性减少燃烧需要数据燃烧的位置。这些数据在成本和可行性方面都在现场收集具有挑战性。我们利用印度旁遮普邦旁遮普邦农作物残留物燃烧的地面监测的数据,以探索使用可访问的卫星图像是否可以更有效地检测到燃烧。具体而言,我们使用了具有高时间分辨率(最多每天)的3M Planetscope数据以及具有每周时间分辨率但光谱信息深度的公共可用Sentinel-2数据。在分析了不同光谱带和燃烧指数单独分离燃烧和未燃烧图的能力之后,我们构建了一个随机森林模型,这些模型确定提供了最大的分离性,并用地面验证的数据评估了模型性能。鉴于测量所带来的挑战,我们的总体模型精度为82%是有利的。基于此过程的见解,我们讨论了检测卫星图像中农作物残留物燃烧的技术挑战,以及衡量燃烧和政策干预措施的影响的挑战。
translated by 谷歌翻译
这项研究介绍了\ textit {landslide4sense},这是一种从遥感中检测到滑坡检测的参考基准。该存储库具有3,799个图像贴片,可从Sentinel-2传感器中融合光学层,并带有数字高程模型和来自ALOS Palsar的斜率层。附加的地形信息促进了对滑坡边界的准确检测,而最近的研究表明,仅使用光学数据,这是具有挑战性的。广泛的数据集支持在滑坡检测中进行深度学习(DL)研究,以及用于系统更新滑坡库存的方法的开发和验证。基准数据集已在四个不同的时间和地理位置收集:伊伯里(2018年9月),科达古(2018年8月),戈尔卡(2015年4月)和台湾(2009年8月)。每个图像像素均标记为属于滑坡,包括各种来源和彻底的手动注释。然后,我们评估11个最先进的DL分割模型的滑坡检测性能:U-NET,RESU-NET,PSPNET,CONTECTNET,DEEPLAB-V2,DEEPLAB-V3+,FCN-8,LINKNET,FRRRN-A,FRRN-A,, FRRN-B和SQNET。所有型号均已从划痕上对每个研究区域的四分之一的补丁进行培训,并在其他三个季度的独立贴片上进行了测试。我们的实验表明,Resu-NET的表现优于其他模型,用于滑坡检测任务。我们在\ url {www.landslide4sense.org}公开获得多种源滑坡基准数据(Landslide4sense)和经过测试的DL模型,为遥感,计算机视觉和机器学习社区建立了重要的资源通常,尤其是对滑坡检测的应用。
translated by 谷歌翻译
提出了一个深度学习模型,以便在未来60分钟的五分钟时间分辨率下以闪电的形式出现。该模型基于反复横向的结构,该结构使其能够识别并预测对流的时空发展,包括雷暴细胞的运动,生长和衰变。预测是在固定网格上执行的,而无需使用风暴对象检测和跟踪。从瑞士和周围的区域收集的输入数据包括地面雷达数据,可见/红外卫星数据以及衍生的云产品,闪电检测,数值天气预测和数字高程模型数据。我们分析了不同的替代损失功能,班级加权策略和模型特征,为将来的研究提供了指南,以最佳地选择损失功能,并正确校准其模型的概率预测。基于这些分析,我们在这项研究中使用焦点损失,但得出结论,它仅在交叉熵方面提供了较小的好处,如果模型的重新校准不实用,这是一个可行的选择。该模型在60分钟的现有周期内实现了0.45的像素临界成功指数(CSI)为0.45,以预测8 km的闪电发生,范围从5分钟的CSI到5分钟的提前时间到CSI到CSI的0.32在A处。收货时间60分钟。
translated by 谷歌翻译
降雨事件的遥感对于运营和科学需求至关重要,包括天气预报,极端洪水,水循环监测等。降水量的降水量。然而,这种雷达的观察范围仅限于几百公里,促使对其他遥感方法的探索,在开阔的海洋上,这代表了不被陆基雷达覆盖的大面积。几十年来,众所周知,诸如Sentinel-1图像之类的C波段SAR图像在海面上表现出降雨签名。但是,SAR来源的降雨产品的开发仍然是一个挑战。在这里,我们提出了一种深度学习方法,以从SAR图像中提取降雨信息。我们证明,在接触和预处理的Sentinel-1/Nexrad数据集中训练的卷积神经网络,例如U-NET,显然优于最先进的过滤方案。我们的结果表明,在分割降水状态下的性能高,由1、3和10 mm/h的阈值描绘。与当前依靠Koch过滤器绘制二进制降雨图的方法相比,这些基于多阈值的模型可以为更高的风速提供降雨估计,因此对于数据同化天气预测或提高SAR的资格可能引起了极大的兴趣 - 衍生的风场数据。
translated by 谷歌翻译
机器学习(ML)是指根据大量数据预测有意义的输出或对复杂系统进行分类的计算机算法。 ML应用于各个领域,包括自然科学,工程,太空探索甚至游戏开发。本文的重点是在化学和生物海洋学领域使用机器学习。在预测全球固定氮水平,部分二氧化碳压力和其他化学特性时,ML的应用是一种有前途的工具。机器学习还用于生物海洋学领域,可从各种图像(即显微镜,流车和视频记录器),光谱仪和其他信号处理技术中检测浮游形式。此外,ML使用其声学成功地对哺乳动物进行了分类,在特定的环境中检测到濒临灭绝的哺乳动物和鱼类。最重要的是,使用环境数据,ML被证明是预测缺氧条件和有害藻华事件的有效方法,这是对环境监测的重要测量。此外,机器学习被用来为各种物种构建许多对其他研究人员有用的数据库,而创建新算法将帮助海洋研究界更好地理解海洋的化学和生物学。
translated by 谷歌翻译
近年来,新发现的矿物沉积物数量和不同矿物质需求的增加有LED探索地质学家,寻找在矿物勘探的每个阶段加工不同数据类型的更有效和创新的方法。作为主要步骤,诸如岩性单元,改变类型,结构和指示剂矿物的各种特征被映射以辅助靶向矿床的决策。不同类型的遥感数据集如卫星和空气传播数据,使得可以克服与映射地质特征相关的常见问题。从不同平台获得的遥感数据量的快速增加鼓励科学家培养先进,创新和强大的数据处理方法。机器学习方法可以帮助处理广泛的遥感数据集,并确定诸如反射连续体和感兴趣的特征的组件之间的关系。这些方法在处理频谱和地面真理测量中是稳健的,用于噪声和不确定性。近年来,通过补充与遥感数据集的地质调查进行了许多研究,现在在地球科学研究中突出。本文对一些流行的和最近建立的机器学习方法的实施和适应提供了全面的审查,用于处理不同类型的遥感数据,并调查其用于检测各种矿床类型的应用。我们展示了组合遥感数据和机器学习方法的高能力,以映射对于提供潜在地图至关重要的不同地质特征。此外,我们发现高级方法的范围来处理新一代遥感数据,以创建改进的矿物前景图。
translated by 谷歌翻译
Crop type maps are critical for tracking agricultural land use and estimating crop production. Remote sensing has proven an efficient and reliable tool for creating these maps in regions with abundant ground labels for model training, yet these labels remain difficult to obtain in many regions and years. NASA's Global Ecosystem Dynamics Investigation (GEDI) spaceborne lidar instrument, originally designed for forest monitoring, has shown promise for distinguishing tall and short crops. In the current study, we leverage GEDI to develop wall-to-wall maps of short vs tall crops on a global scale at 10 m resolution for 2019-2021. Specifically, we show that (1) GEDI returns can reliably be classified into tall and short crops after removing shots with extreme view angles or topographic slope, (2) the frequency of tall crops over time can be used to identify months when tall crops are at their peak height, and (3) GEDI shots in these months can then be used to train random forest models that use Sentinel-2 time series to accurately predict short vs. tall crops. Independent reference data from around the world are then used to evaluate these GEDI-S2 maps. We find that GEDI-S2 performed nearly as well as models trained on thousands of local reference training points, with accuracies of at least 87% and often above 90% throughout the Americas, Europe, and East Asia. Systematic underestimation of tall crop area was observed in regions where crops frequently exhibit low biomass, namely Africa and South Asia, and further work is needed in these systems. Although the GEDI-S2 approach only differentiates tall from short crops, in many landscapes this distinction goes a long way toward mapping the main individual crop types. The combination of GEDI and Sentinel-2 thus presents a very promising path towards global crop mapping with minimal reliance on ground data.
translated by 谷歌翻译
土壤侵蚀是对世界各地环境和长期土地管理的重大威胁。人类活动加速的土壤侵蚀会造成陆地和水生生态系统的极端变化,这在现场阶段(30-m)的当前和可能的未来没有得到充分的调查/预测。在这里,我们使用三种替代方案(2.6、4.5和8.5)估计/预测通过水侵蚀(薄板和RILL侵蚀)的土壤侵蚀速率,共享社会经济途径和代表性浓度途径(SSP-RCP)情景。田间尺度的土壤侵蚀模型(FSSLM)估计依赖于由卫星和基于图像的土地使用和土地覆盖的估计(LULC)集成的高分辨率(30-m)G2侵蚀模型,对长期降水量的规范观察,以及耦合模型比较项目阶段6(CMIP6)的方案。基线模型(2020年)估计土壤侵蚀速率为2.32 mg HA 1年1年,具有当前的农业保护实践(CPS)。当前CPS的未来情况表明,在气候和LULC变化的SSP-RCP方案的不同组合下,增加了8%至21%。 2050年的土壤侵蚀预测表明,所有气候和LULC场景都表明极端事件的增加或极端空间位置的变化很大程度上从南部到美国东部和东北地区。
translated by 谷歌翻译
太阳能现在是历史上最便宜的电力形式。不幸的是,由于其变异性,显着提高栅格的太阳能的一部分仍然具有挑战性,这使得电力的供需平衡更加困难。虽然热发电机坡度 - 它们可以改变输出的最高速率 - 是有限的,太阳能的坡度基本上是无限的。因此,准确的近期太阳能预测或垂圈,对于提供预警来调整热发电机输出,以响应于太阳能变化来调整热发电机,以确保平衡供需。为了解决问题,本文开发了使用自我监督学习的丰富和易于使用的多光谱卫星数据的太阳能垂圈的一般模型。具体而言,我们使用卷积神经网络(CNN)和长短期内存网络(LSTM)开发深度自动回归模型,这些模型在多个位置训练全球培训,以预测最近推出的最近收集的时空数据的未来观察-R系列卫星。我们的模型估计了基于卫星观测的未来的太阳辐照度,我们向较小的场地特定的太阳能数据培训的回归模型提供,以提供近期太阳能光伏(PV)预测,其考虑了现场特征的特征。我们评估了我们在25个太阳能场所的不同覆盖区域和预测视野的方法,并表明我们的方法利用地面真理观察结果产生靠近模型的错误。
translated by 谷歌翻译
自动化驾驶系统(广告)开辟了汽车行业的新领域,为未来的运输提供了更高的效率和舒适体验的新可能性。然而,在恶劣天气条件下的自主驾驶已经存在,使自动车辆(AVS)长时间保持自主车辆(AVS)或更高的自主权。本文评估了天气在分析和统计方式中为广告传感器带来的影响和挑战,并对恶劣天气条件进行了解决方案。彻底报道了关于对每种天气的感知增强的最先进技术。外部辅助解决方案如V2X技术,当前可用的数据集,模拟器和天气腔室的实验设施中的天气条件覆盖范围明显。通过指出各种主要天气问题,自主驾驶场目前正在面临,近年来审查硬件和计算机科学解决方案,这项调查概述了在不利的天气驾驶条件方面的障碍和方向的障碍和方向。
translated by 谷歌翻译
In intensively managed forests in Europe, where forests are divided into stands of small size and may show heterogeneity within stands, a high spatial resolution (10 - 20 meters) is arguably needed to capture the differences in canopy height. In this work, we developed a deep learning model based on multi-stream remote sensing measurements to create a high-resolution canopy height map over the "Landes de Gascogne" forest in France, a large maritime pine plantation of 13,000 km$^2$ with flat terrain and intensive management. This area is characterized by even-aged and mono-specific stands, of a typical length of a few hundred meters, harvested every 35 to 50 years. Our deep learning U-Net model uses multi-band images from Sentinel-1 and Sentinel-2 with composite time averages as input to predict tree height derived from GEDI waveforms. The evaluation is performed with external validation data from forest inventory plots and a stereo 3D reconstruction model based on Skysat imagery available at specific locations. We trained seven different U-net models based on a combination of Sentinel-1 and Sentinel-2 bands to evaluate the importance of each instrument in the dominant height retrieval. The model outputs allow us to generate a 10 m resolution canopy height map of the whole "Landes de Gascogne" forest area for 2020 with a mean absolute error of 2.02 m on the Test dataset. The best predictions were obtained using all available satellite layers from Sentinel-1 and Sentinel-2 but using only one satellite source also provided good predictions. For all validation datasets in coniferous forests, our model showed better metrics than previous canopy height models available in the same region.
translated by 谷歌翻译
对联合国可持续发展目标的进展(SDGS)因关键环境和社会经济指标缺乏数据而受到阻碍,其中历史上有稀疏时间和空间覆盖率的地面调查。机器学习的最新进展使得可以利用丰富,频繁更新和全球可用的数据,例如卫星或社交媒体,以向SDGS提供洞察力。尽管有希望的早期结果,但到目前为止使用此类SDG测量数据的方法在很大程度上在不同的数据集或使用不一致的评估指标上进行了评估,使得难以理解的性能是改善,并且额外研究将是最丰富的。此外,处理卫星和地面调查数据需要域知识,其中许多机器学习群落缺乏。在本文中,我们介绍了3个SDG的3个基准任务的集合,包括与经济发展,农业,健康,教育,水和卫生,气候行动和陆地生命相关的任务。 15个任务中的11个数据集首次公开发布。我们为Acceptandbench的目标是(1)降低机器学习界的进入的障碍,以促进衡量和实现SDGS; (2)提供标准基准,用于评估各种SDG的任务的机器学习模型; (3)鼓励开发新颖的机器学习方法,改进的模型性能促进了对SDG的进展。
translated by 谷歌翻译
美国宇航局的全球生态系统动力学调查(GEDI)是一个关键的气候使命,其目标是推进我们对森林在全球碳循环中的作用的理解。虽然GEDI是第一个基于空间的激光器,明确优化,以测量地上生物质的垂直森林结构预测,这对广泛的观测和环境条件的大量波形数据的准确解释是具有挑战性的。在这里,我们提出了一种新颖的监督机器学习方法来解释GEDI波形和全球标注冠层顶部高度。我们提出了一种基于深度卷积神经网络(CNN)集合的概率深度学习方法,以避免未知效果的显式建模,例如大气噪声。该模型学会提取概括地理区域的强大特征,此外,产生可靠的预测性不确定性估计。最终,我们模型产生的全球顶棚顶部高度估计估计的预期RMSE为2.7米,低偏差。
translated by 谷歌翻译
深度学习模式和地球观察的协同组合承诺支持可持续发展目标(SDGS)。新的发展和夸张的申请已经在改变人类将面临生活星球挑战的方式。本文审查了当前对地球观测数据的最深入学习方法,以及其在地球观测中深度学习的快速发展受到影响和实现最严重的SDG的应用。我们系统地审查案例研究至1)实现零饥饿,2)可持续城市,3)提供保管安全,4)减轻和适应气候变化,5)保留生物多样性。关注重要的社会,经济和环境影响。提前令人兴奋的时期即将到来,算法和地球数据可以帮助我们努力解决气候危机并支持更可持续发展的地方。
translated by 谷歌翻译