We study the problem of efficient semantic segmentation for large-scale 3D point clouds. By relying on expensive sampling techniques or computationally heavy pre/postprocessing steps, most existing approaches are only able to be trained and operate over small-scale point clouds. In this paper, we introduce RandLA-Net, an efficient and lightweight neural architecture to directly infer per-point semantics for large-scale point clouds. The key to our approach is to use random point sampling instead of more complex point selection approaches. Although remarkably computation and memory efficient, random sampling can discard key features by chance. To overcome this, we introduce a novel local feature aggregation module to progressively increase the receptive field for each 3D point, thereby effectively preserving geometric details. Extensive experiments show that our RandLA-Net can process 1 million points in a single pass with up to 200× faster than existing approaches. Moreover, our RandLA-Net clearly surpasses state-of-the-art approaches for semantic segmentation on two large-scale benchmarks Semantic3D and Se-manticKITTI.
translated by 谷歌翻译
Raw point clouds data inevitably contains outliers or noise through acquisition from 3D sensors or reconstruction algorithms. In this paper, we present a novel endto-end network for robust point clouds processing, named PointASNL, which can deal with point clouds with noise effectively. The key component in our approach is the adaptive sampling (AS) module. It first re-weights the neighbors around the initial sampled points from farthest point sampling (FPS), and then adaptively adjusts the sampled points beyond the entire point cloud. Our AS module can not only benefit the feature learning of point clouds, but also ease the biased effect of outliers. To further capture the neighbor and long-range dependencies of the sampled point, we proposed a local-nonlocal (L-NL) module inspired by the nonlocal operation. Such L-NL module enables the learning process insensitive to noise. Extensive experiments verify the robustness and superiority of our approach in point clouds processing tasks regardless of synthesis data, indoor data, and outdoor data with or without noise. Specifically, PointASNL achieves state-of-theart robust performance for classification and segmentation tasks on all datasets, and significantly outperforms previous methods on real-world outdoor SemanticKITTI dataset with considerate noise. Our code is released through https: //github.com/yanx27/PointASNL.
translated by 谷歌翻译
与卷积神经网络相比,最近开发的纯变压器架构已经实现了对点云学习基准的有希望的准确性。然而,现有点云变压器是计算昂贵的,因为它们在构建不规则数据时浪费了大量时间。要解决此缺点,我们呈现稀疏窗口注意(SWA)模块,以收集非空体素的粗粒颗粒特征,不仅绕过昂贵的不规则数据结构和无效的空体素计算,还可以获得线性计算复杂性到体素分辨率。同时,要收集关于全球形状的细粒度特征,我们介绍了相对的注意(RA)模块,更强大的自我关注变体,用于对象的刚性变换。我们配备了SWA和RA,我们构建了我们的神经结构,称为PVT,将两个模块集成到Point云学习的联合框架中。与以前的变压器和关注的模型相比,我们的方法平均达到了分类基准和10x推理加速的最高精度为94.0%。广泛的实验还有效地验证了PVT在部分和语义分割基准上的有效性(分别为86.6%和69.2%Miou)。
translated by 谷歌翻译
大规模发光点云的快速有效语义分割是自主驾驶中的一个基本问题。为了实现这一目标,现有的基于点的方法主要选择采用随机抽样策略来处理大规模点云。但是,我们的数量和定性研究发现,随机抽样可能不适合自主驾驶场景,因为LiDAR点遵循整个空间的不均匀甚至长尾巴分布,这阻止了模型从从中捕获足够的信息,从而从中捕获了足够的信息不同的距离范围并降低了模型的学习能力。为了减轻这个问题,我们提出了一种新的极性缸平衡的随机抽样方法,该方法使下采样的点云能够保持更平衡的分布并改善不同空间分布下的分割性能。此外,引入了采样一致性损失,以进一步提高分割性能并降低模型在不同采样方法下的方差。广泛的实验证实,我们的方法在Semantickitti和Semanticposs基准测试中都产生了出色的性能,分别提高了2.8%和4.0%。
translated by 谷歌翻译
Scene understanding is crucial for autonomous robots in dynamic environments for making future state predictions, avoiding collisions, and path planning. Camera and LiDAR perception made tremendous progress in recent years, but face limitations under adverse weather conditions. To leverage the full potential of multi-modal sensor suites, radar sensors are essential for safety critical tasks and are already installed in most new vehicles today. In this paper, we address the problem of semantic segmentation of moving objects in radar point clouds to enhance the perception of the environment with another sensor modality. Instead of aggregating multiple scans to densify the point clouds, we propose a novel approach based on the self-attention mechanism to accurately perform sparse, single-scan segmentation. Our approach, called Gaussian Radar Transformer, includes the newly introduced Gaussian transformer layer, which replaces the softmax normalization by a Gaussian function to decouple the contribution of individual points. To tackle the challenge of the transformer to capture long-range dependencies, we propose our attentive up- and downsampling modules to enlarge the receptive field and capture strong spatial relations. We compare our approach to other state-of-the-art methods on the RadarScenes data set and show superior segmentation quality in diverse environments, even without exploiting temporal information.
translated by 谷歌翻译
在本文中,我们提出了一个全面的点云语义分割网络,该网络汇总了本地和全球多尺度信息。首先,我们提出一个角度相关点卷积(ACPCONV)模块,以有效地了解点的局部形状。其次,基于ACPCONV,我们引入了局部多规模拆分(MSS)块,该块从一个单个块中连接到一个单个块中的特征,并逐渐扩大了接受场,这对利用本地上下文是有益的。第三,受HRNET的启发,在2D图像视觉任务上具有出色的性能,我们构建了一个针对Point Cloud的HRNET,以学习全局多尺度上下文。最后,我们介绍了一种融合多分辨率预测并进一步改善点云语义分割性能的点上的注意融合方法。我们在几个基准数据集上的实验结果和消融表明,与现有方法相比,我们提出的方法有效,能够实现最先进的性能。
translated by 谷歌翻译
有效处理3D数据一直是一个挑战。大规模点云上的空间操作以稀疏数据存储,需要额外的成本。由于变形金刚的成功吸引,研究人员正在使用多头关注视力任务。但是,变压器中的注意力计算在输入数量和点云等集合的空间直觉中具有二次复杂性。我们重新设计了这项工作中的“变压器”,并将它们纳入形状分类以及部分和场景细分的层次结构框架中。我们建议我们的当地注意力单元,该单元捕获了空间社区的特征。我们还通过利用每次迭代的采样和分组来计算有效且动态的全局交叉注意。最后,为了减轻点云的非异质性,我们提出了一个有效的多尺度令牌化(MST),该标记(MST)提取了尺度不变的令牌以供注意操作。所提出的分层模型以平均准确性实现最新的形状分类,并以先前的分割方法的相同,同时需要更少的计算。我们提出的体系结构预测分割标签的标签约为以前最有效方法的延迟和参数计数的一半,具有可比的性能。该代码可从https://github.com/yigewang-whu/cloudattention获得。
translated by 谷歌翻译
随着激光雷达传感器和3D视觉摄像头的扩散,3D点云分析近年来引起了重大关注。经过先驱工作点的成功后,基于深度学习的方法越来越多地应用于各种任务,包括3D点云分段和3D对象分类。在本文中,我们提出了一种新颖的3D点云学习网络,通过选择性地执行具有动态池的邻域特征聚合和注意机制来提出作为动态点特征聚合网络(DPFA-NET)。 DPFA-Net有两个可用于三维云的语义分割和分类的变体。作为DPFA-NET的核心模块,我们提出了一个特征聚合层,其中每个点的动态邻域的特征通过自我注意机制聚合。与其他分割模型相比,来自固定邻域的聚合特征,我们的方法可以在不同层中聚合来自不同邻居的特征,在不同层中为查询点提供更具选择性和更广泛的视图,并更多地关注本地邻域中的相关特征。此外,为了进一步提高所提出的语义分割模型的性能,我们提出了两种新方法,即两级BF-Net和BF-Rengralization来利用背景前台信息。实验结果表明,所提出的DPFA-Net在S3DIS数据集上实现了最先进的整体精度分数,在S3DIS数据集上进行了语义分割,并在不同的语义分割,部分分割和3D对象分类中提供始终如一的令人满意的性能。与其他方法相比,它也在计算上更有效。
translated by 谷歌翻译
Point cloud learning has lately attracted increasing attention due to its wide applications in many areas, such as computer vision, autonomous driving, and robotics. As a dominating technique in AI, deep learning has been successfully used to solve various 2D vision problems. However, deep learning on point clouds is still in its infancy due to the unique challenges faced by the processing of point clouds with deep neural networks. Recently, deep learning on point clouds has become even thriving, with numerous methods being proposed to address different problems in this area. To stimulate future research, this paper presents a comprehensive review of recent progress in deep learning methods for point clouds. It covers three major tasks, including 3D shape classification, 3D object detection and tracking, and 3D point cloud segmentation. It also presents comparative results on several publicly available datasets, together with insightful observations and inspiring future research directions.
translated by 谷歌翻译
通过当地地区的点特征聚合来捕获的细粒度几何是对象识别和场景理解在点云中的关键。然而,现有的卓越点云骨架通常包含最大/平均池用于局部特征聚集,这在很大程度上忽略了点的位置分布,导致细粒结构组装不足。为了缓解这一瓶颈,我们提出了一个有效的替代品,可以使用新颖的图形表示明确地模拟了本地点之间的空间关系,并以位置自适应方式聚合特征,从而实现位置敏感的表示聚合特征。具体而言,Papooling分别由两个关键步骤,图形结构和特征聚合组成,分别负责构造与将中心点连接的边缘与本地区域中的每个相邻点连接的曲线图组成,以将它们的相对位置信息映射到通道 - 明智的细心权重,以及基于通过图形卷积网络(GCN)的生成权重自适应地聚合局部点特征。 Papooling简单而且有效,并且足够灵活,可以随时为PointNet ++和DGCNN等不同的流行律源,作为即插即说运算符。关于各种任务的广泛实验,从3D形状分类,部分分段对场景分割良好的表明,伪装可以显着提高预测准确性,而具有最小的额外计算开销。代码将被释放。
translated by 谷歌翻译
许多基于点的语义分割方法是为室内场景设计的,但如果它们被应用于户外环境中的LIDAR传感器捕获的点云,则他们挣扎。为了使这些方法更有效和坚固,使得它们可以处理LIDAR数据,我们介绍了重新建立基于3D点的操作的一般概念,使得它们可以在投影空间中运行。虽然我们通过三个基于点的方法显示了重新计算的版本速度快300到400倍,但实现了更高的准确性,但我们还证明了重新制定基于3D点的操作的概念允许设计统一益处的新架构基于点和基于图像的方法。作为示例,我们介绍一种网络,该网络将基于重新的3D点的操作集成到2D编码器 - 解码器架构中,该架构融合来自不同2D尺度的信息。我们评估了四个具有挑战性的语义LIDAR点云分割的方法,并显示利用基于2D图像的操作的重新推出的基于3D点的操作实现了所有四个数据集的非常好的结果。
translated by 谷歌翻译
Downsampling and feature extraction are essential procedures for 3D point cloud understanding. Existing methods are limited by the inconsistent point densities of different parts in the point cloud. In this work, we analyze the limitation of the downsampling stage and propose the pre-abstraction group-wise window-normalization module. In particular, the window-normalization method is leveraged to unify the point densities in different parts. Furthermore, the group-wise strategy is proposed to obtain multi-type features, including texture and spatial information. We also propose the pre-abstraction module to balance local and global features. Extensive experiments show that our module performs better on several tasks. In segmentation tasks on S3DIS (Area 5), the proposed module performs better on small object recognition, and the results have more precise boundaries than others. The recognition of the sofa and the column is improved from 69.2% to 84.4% and from 42.7% to 48.7%, respectively. The benchmarks are improved from 71.7%/77.6%/91.9% (mIoU/mAcc/OA) to 72.2%/78.2%/91.4%. The accuracies of 6-fold cross-validation on S3DIS are 77.6%/85.8%/91.7%. It outperforms the best model PointNeXt-XL (74.9%/83.0%/90.3%) by 2.7% on mIoU and achieves state-of-the-art performance. The code and models are available at https://github.com/DBDXSS/Window-Normalization.git.
translated by 谷歌翻译
我们介绍了PointConvormer,这是一个基于点云的深神经网络体系结构的新颖构建块。受到概括理论的启发,PointConvormer结合了点卷积的思想,其中滤波器权重仅基于相对位置,而变形金刚则利用了基于功能的注意力。在PointConvormer中,附近点之间的特征差异是重量重量卷积权重的指标。因此,我们从点卷积操作中保留了不变,而注意力被用来选择附近的相关点进行卷积。为了验证PointConvormer的有效性,我们在点云上进行了语义分割和场景流估计任务,其中包括扫描仪,Semantickitti,FlyingThings3D和Kitti。我们的结果表明,PointConvormer具有经典的卷积,常规变压器和Voxelized稀疏卷积方法的表现,具有较小,更高效的网络。可视化表明,PointConvormer的性能类似于在平面表面上的卷积,而邻域选择效果在物体边界上更强,表明它具有两全其美。
translated by 谷歌翻译
3D点云的卷积经过广泛研究,但在几何深度学习中却远非完美。卷积的传统智慧在3D点之间表现出特征对应关系,这是对差的独特特征学习的内在限制。在本文中,我们提出了自适应图卷积(AGCONV),以供点云分析的广泛应用。 AGCONV根据其动态学习的功能生成自适应核。与使用固定/各向同性核的解决方案相比,AGCONV提高了点云卷积的灵活性,有效,精确地捕获了不同语义部位的点之间的不同关系。与流行的注意力体重方案不同,AGCONV实现了卷积操作内部的适应性,而不是简单地将不同的权重分配给相邻点。广泛的评估清楚地表明,我们的方法优于各种基准数据集中的点云分类和分割的最新方法。同时,AGCONV可以灵活地采用更多的点云分析方法来提高其性能。为了验证其灵活性和有效性,我们探索了基于AGCONV的完成,DeNoing,Upsmpling,注册和圆圈提取的范式,它们与竞争对手相当甚至优越。我们的代码可在https://github.com/hrzhou2/adaptconv-master上找到。
translated by 谷歌翻译
Unlike images which are represented in regular dense grids, 3D point clouds are irregular and unordered, hence applying convolution on them can be difficult. In this paper, we extend the dynamic filter to a new convolution operation, named PointConv. PointConv can be applied on point clouds to build deep convolutional networks. We treat convolution kernels as nonlinear functions of the local coordinates of 3D points comprised of weight and density functions. With respect to a given point, the weight functions are learned with multi-layer perceptron networks and density functions through kernel density estimation. The most important contribution of this work is a novel reformulation proposed for efficiently computing the weight functions, which allowed us to dramatically scale up the network and significantly improve its performance. The learned convolution kernel can be used to compute translation-invariant and permutation-invariant convolution on any point set in the 3D space. Besides, PointConv can also be used as deconvolution operators to propagate features from a subsampled point cloud back to its original resolution. Experiments on ModelNet40, ShapeNet, and ScanNet show that deep convolutional neural networks built on PointConv are able to achieve state-of-the-art on challenging semantic segmentation benchmarks on 3D point clouds. Besides, our experiments converting CIFAR-10 into a point cloud showed that networks built on PointConv can match the performance of convolutional networks in 2D images of a similar structure.
translated by 谷歌翻译
LIDAR传感器对于自动驾驶汽车和智能机器人的感知系统至关重要。为了满足现实世界应用程序中的实时要求,有必要有效地分割激光扫描。以前的大多数方法将3D点云直接投影到2D球形范围图像上,以便它们可以利用有效的2D卷积操作进行图像分割。尽管取得了令人鼓舞的结果,但在球形投影中,邻里信息尚未保存得很好。此外,在单个扫描分割任务中未考虑时间信息。为了解决这些问题,我们提出了一种新型的语义分割方法,用于元素rangeseg的激光雷达序列,其中引入了新的范围残差图像表示以捕获空间时间信息。具体而言,使用元内核来提取元特征,从而减少了2D范围图像坐标输入和3D笛卡尔坐标输出之间的不一致。有效的U-NET主链用于获得多尺度功能。此外,特征聚合模块(FAM)增强了范围通道的作用,并在不同级别上汇总特征。我们已经进行了广泛的实验,以评估semantickitti和semanticposs。有希望的结果表明,我们提出的元rangeseg方法比现有方法更有效。我们的完整实施可在https://github.com/songw-zju/meta-rangeseg上公开获得。
translated by 谷歌翻译
We propose a novel deep learning-based framework to tackle the challenge of semantic segmentation of largescale point clouds of millions of points. We argue that the organization of 3D point clouds can be efficiently captured by a structure called superpoint graph (SPG), derived from a partition of the scanned scene into geometrically homogeneous elements. SPGs offer a compact yet rich representation of contextual relationships between object parts, which is then exploited by a graph convolutional network. Our framework sets a new state of the art for segmenting outdoor LiDAR scans (+11.9 and +8.8 mIoU points for both Semantic3D test sets), as well as indoor scans (+12.4 mIoU points for the S3DIS dataset).
translated by 谷歌翻译
点云学习界见证了从CNN到变形金刚的模型转移,纯变压器架构在主要学习基准上实现了最高精度。然而,现有的点变压器是计算昂贵的,因为它们需要产生大的注意图,其相对于输入大小具有二次复杂度(空间和时间)。为了解决这种缺点,我们介绍补丁注意(PAT),以便自适应地学习计算注意力地图的更小的基础。通过对这些基础的加权求和,PAT仅捕获全局形状上下文,而且还可以实现输入大小的线性复杂性。此外,我们提出了一种轻量级的多尺度关注(MST)块来构建不同尺度特征的关注,提供具有多尺度特征的模型。我们配备了PAT和MST,我们构建了我们的神经结构,称为PatchFormer,将两个模块集成到Point云学习的联合框架中。广泛的实验表明,我们的网络对一般点云学习任务的可比准确性具有9.2倍的速度高于先前的点变压器。
translated by 谷歌翻译
最近神经网络的成功使得能够更好地解释3D点云,但是处理大规模的3D场景仍然是一个具有挑战性的问题。大多数电流方法将大型场景划分为小区,并将当地预测组合在一起。然而,该方案不可避免地涉及预处理和后处理的附加阶段,并且由于局部视角下的预测也可能降低最终输出。本文介绍了由新的轻质自我关注层组成的快速点变压器。我们的方法编码连续的3D坐标,基于体素散列的架构提高了计算效率。所提出的方法用3D语义分割和3D检测进行了说明。我们的方法的准确性对基于最佳的体素的方法具有竞争力,我们的网络达到了比最先进的点变压器更快的推理时间速度更快的136倍,具有合理的准确性权衡。
translated by 谷歌翻译
借助深度学习范式,许多点云网络已经发明了用于视觉分析。然而,由于点云数据的给定信息尚未完全利用,因此对这些网络的发展存在很大的潜力。为了提高现有网络在分析点云数据中的有效性,我们提出了一个即插即用模块,PNP-3D,旨在通过涉及更多来自显式3D空间的本地背景和全球双线性响应来改进基本点云特征表示隐含的功能空间。为了彻底评估我们的方法,我们对三个标准点云分析任务进行实验,包括分类,语义分割和对象检测,在那里我们从每个任务中选择三个最先进的网络进行评估。作为即插即用模块,PNP-3D可以显着提高已建立的网络的性能。除了在四个广泛使用的点云基准测试中实现最先进的结果,我们还提供了全面的消融研究和可视化,以展示我们的方法的优势。代码将在https://github.com/shiqiu0419/pnp-3d上获得。
translated by 谷歌翻译