语音识别的RNN-TransDucer(RNN-T)框架一直在越来越受欢迎,尤其是用于实时部署的ASR系统,因为它将高精度与自然流识别结合在一起。RNN-T的缺点之一是其损耗函数相对较慢,并且可以使用大量内存。在词汇大小较大的情况下,使用RNN-T损失的过多GPU记忆使用可能会使使用RNN-T损失是不切实际的:例如,对于基于中文的ASR而言。我们介绍了一种方法,用于更快,更快的记忆效率RNN-T损失计算。我们首先使用在编码器和解码器嵌入式中线性的简单木器网络获得RNN-T递归的修剪边界;我们可以在不使用很多内存的情况下对此进行评估。然后,我们使用那些修剪界限来评估完整的非线性木匠网络。
translated by 谷歌翻译
This paper proposes a modification to RNN-Transducer (RNN-T) models for automatic speech recognition (ASR). In standard RNN-T, the emission of a blank symbol consumes exactly one input frame; in our proposed method, we introduce additional blank symbols, which consume two or more input frames when emitted. We refer to the added symbols as big blanks, and the method multi-blank RNN-T. For training multi-blank RNN-Ts, we propose a novel logit under-normalization method in order to prioritize emissions of big blanks. With experiments on multiple languages and datasets, we show that multi-blank RNN-T methods could bring relative speedups of over +90%/+139% to model inference for English Librispeech and German Multilingual Librispeech datasets, respectively. The multi-blank RNN-T method also improves ASR accuracy consistently. We will release our implementation of the method in the NeMo (\url{https://github.com/NVIDIA/NeMo}) toolkit.
translated by 谷歌翻译
经常性的神经网络传感器(RNN-T)目标在建立当今最好的自动语音识别(ASR)系统中发挥着重要作用。与连接员时间分类(CTC)目标类似,RNN-T损失使用特定规则来定义生成一组对准以形成用于全汇训练的格子。但是,如果这些规则是最佳的,则在很大程度上未知,并且会导致最佳ASR结果。在这项工作中,我们介绍了一种新的传感器目标函数,它概括了RNN-T丢失来接受标签的图形表示,从而提供灵活和有效的框架来操纵训练格子,例如用于限制对齐或研究不同的转换规则。我们证明,与标准RNN-T相比,具有CTC样格子的基于传感器的ASR实现了更好的结果,同时确保了严格的单调对齐,这将允许更好地优化解码过程。例如,所提出的CTC样换能器系统对于测试 - LibrisPeech的其他条件,实现了5.9%的字误差率,相对于基于等效的RNN-T系统的提高,对应于4.8%。
translated by 谷歌翻译
最近,基于注意的编码器 - 解码器(AED)模型对多个任务的端到端自动语音识别(ASR)显示了高性能。在此类模型中解决了过度控制,本文介绍了轻松关注的概念,这是一种简单地逐渐注入对训练期间对编码器 - 解码器注意重量的统一分配,其易于用两行代码实现。我们调查轻松关注跨不同AED模型架构和两个突出的ASR任务,华尔街日志(WSJ)和LibRisPeech的影响。我们发现,在用外部语言模型解码时,随着宽松的注意力训练的变压器始终如一地始终如一地遵循标准基线模型。在WSJ中,我们为基于变压器的端到端语音识别设置了一个新的基准,以3.65%的单词错误率,最优于13.1%的相对状态,同时仅引入单个HyperParameter。
translated by 谷歌翻译
本文介绍了新颖的加权有限态传感器(WFST)拓扑,以实现连接的时间分类(CTC)类似于自动语音识别的算法。提出了三个新的CTC变体:(1)“紧凑型CTC”,其中单位之间的直接过渡被<epsilon>退回过渡代替;(2)“最小ctc”,仅在wfst composition中使用时才添加<blank>自我;(3)“无私的CTC”变体,它不允许自动浮动对非空时单位。Compact-CTC允许较小的WFST解码图较小的1.5倍,并在使用LF-MMI目标训练CTC模型的情况下将内存消耗减少两次,而不会损害识别精度。最小CTC可将图形的大小和记忆消耗降低两次和四次,以使精度下降的成本下降。使用无私CTC可以提高宽上下文窗口模型的准确性。
translated by 谷歌翻译
梁搜索是端到端模型的主要ASR解码算法,生成树结构化假设。但是,最近的研究表明,通过假设合并进行解码可以通过可比或更好的性能实现更有效的搜索。但是,复发网络中的完整上下文与假设合并不兼容。我们建议在RNN传感器的预测网络中使用矢量定量的长期记忆单元(VQ-LSTM)。通过与ASR网络共同培训离散表示形式,可以积极合并假设以生成晶格。我们在总机语料库上进行的实验表明,提出的VQ RNN传感器改善了具有常规预测网络的换能器的ASR性能,同时还产生了具有相同光束尺寸的Oracle Word错误率(WER)的密集晶格。其他语言模型撤退实验还证明了拟议的晶格生成方案的有效性。
translated by 谷歌翻译
我们研究应用语言模型(LM)对指示语言自动语音识别(ASR)系统输出的影响。我们微调WAV2VEC $ 2.0 $型号的$ 18 $指示性语言,并通过根据各种来源派生的文本训练的语言模型调整结果。我们的发现表明,平均字符错误率(CER)降低了$ 28 $ \%,平均单词错误率(WER)在解码LM后降低了$ 36 $ \%。我们表明,与多样化的LM相比,大型LM可能无法提供实质性的改进。我们还证明,可以在特定于域的数据上获得高质量的转录,而无需重新培训ASR模型并显示了生物医学领域的结果。
translated by 谷歌翻译
统一的流和非流式的双通(U2)用于语音识别的端到端模型在流传输能力,准确性,实时因素(RTF)和延迟方面表现出很大的性能。在本文中,我们呈现U2 ++,U2的增强版本,进一步提高了准确性。 U2 ++的核心思想是在训练中同时使用标签序列的前向和向后信息来学习更丰富的信息,并在解码时结合前向和后向预测以提供更准确的识别结果。我们还提出了一种名为SPECSUB的新数据增强方法,以帮助U2 ++模型更准确和强大。我们的实验表明,与U2相比,U2 ++在训练中显示了更快的收敛,更好地鲁棒性对解码方法,以及U2上的一致5 \%-8 \%字错误率降低增益。在Aishell-1的实验中,我们通过u2 ++实现了一个4.63 \%的字符错误率(cer),其中没有流媒体设置和5.05 \%,具有320ms延迟的流设置。据我们所知,5.05 \%是Aishell-1测试集上的最佳发布的流媒体结果。
translated by 谷歌翻译
End-to-end speech recognition models trained using joint Connectionist Temporal Classification (CTC)-Attention loss have gained popularity recently. In these models, a non-autoregressive CTC decoder is often used at inference time due to its speed and simplicity. However, such models are hard to personalize because of their conditional independence assumption that prevents output tokens from previous time steps to influence future predictions. To tackle this, we propose a novel two-way approach that first biases the encoder with attention over a predefined list of rare long-tail and out-of-vocabulary (OOV) words and then uses dynamic boosting and phone alignment network during decoding to further bias the subword predictions. We evaluate our approach on open-source VoxPopuli and in-house medical datasets to showcase a 60% improvement in F1 score on domain-specific rare words over a strong CTC baseline.
translated by 谷歌翻译
在本文中,我们提出了一种新的双通方法来统一一个模型中的流和非流媒体端到端(E2E)语音识别。我们的型号采用混合CTC /注意架构,其中编码器中的构装层被修改。我们提出了一种基于动态的块的注意力策略,以允许任意右上下文长度。在推理时间,CTC解码器以流式方式生成n最佳假设。只有更改块大小,可以轻松控制推理延迟。然后,CTC假设被注意力解码器重新筛选以获得最终结果。这种有效的备用过程导致句子级延迟非常小。我们在开放的170小时Aishell-1数据集上的实验表明,所提出的方法可以简单有效地统一流和非流化模型。在Aishell-1测试集上,与标准的非流式变压器相比,我们的统一模型在非流式ASR中实现了5.60%的相对字符错误率(CER)减少。同一模型在流式ASR系统中实现了5.42%的CER,640ms延迟。
translated by 谷歌翻译
格子形成了从自动语音识别系统产生的多个假设的紧凑型表示,并且已被证明可以提高与使用一个最佳假设的口语理解和语音转换等下游任务的性能。在这项工作中,我们展望了莱迪思提示在二次通过中抢救N-Best列表的有效性。我们用经常性网络编码格子,并培训注意Encoder-解码器模型,用于N-Best Rescoring。重新调用模型的重点模型在首先达到4-5%的相对字错误率和6-8%,注意到晶格和声学特征。我们展示了救援模型,注意了格格特优于模型,以注意力为N-Best假设。我们还研究了不同的方法来纳入格子编码器中的晶格重量,并展示他们对N-Best Rescoring的重要性。
translated by 谷歌翻译
在自动语音识别(ASR)研究中,歧视性标准在DNN-HMM系统中取得了出色的性能。鉴于这一成功,采用判别标准是有望提高端到端(E2E)ASR系统的性能。有了这一动机,以前的作品将最小贝叶斯风险(MBR,歧视性标准之一)引入了E2E ASR系统中。但是,基于MBR的方法的有效性和效率受到损害:MBR标准仅用于系统培训,这在训练和解码之间造成了不匹配;基于MBR的方法中的直接解码过程导致需要预先训练的模型和缓慢的训练速度。为此,在这项工作中提出了新的算法,以整合另一种广泛使用的判别标准,无晶格的最大互信息(LF-MMI),不仅在训练阶段,而且在解码过程中。提出的LF-MI训练和解码方法显示了它们对两个广泛使用的E2E框架的有效性:基于注意力的编码器解码器(AEDS)和神经传感器(NTS)。与基于MBR的方法相比,提出的LF-MMI方法:保持训练和解码之间的一致性;避开直立的解码过程;来自具有卓越训练效率的随机初始化模型的火车。实验表明,LF-MI方法的表现优于其MBR对应物,并始终导致各种框架和数据集从30小时到14.3k小时上的统计学意义改进。所提出的方法在Aishell-1(CER 4.10%)和Aishell-2(CER 5.02%)数据集上实现了最先进的结果(SOTA)。代码已发布。
translated by 谷歌翻译
The network architecture of end-to-end (E2E) automatic speech recognition (ASR) can be classified into several models, including connectionist temporal classification (CTC), recurrent neural network transducer (RNN-T), attention mechanism, and non-autoregressive mask-predict models. Since each of these network architectures has pros and cons, a typical use case is to switch these separate models depending on the application requirement, resulting in the increased overhead of maintaining all models. Several methods for integrating two of these complementary models to mitigate the overhead issue have been proposed; however, if we integrate more models, we will further benefit from these complementary models and realize broader applications with a single system. This paper proposes four-decoder joint modeling (4D) of CTC, attention, RNN-T, and mask-predict, which has the following three advantages: 1) The four decoders are jointly trained so that they can be easily switched depending on the application scenarios. 2) Joint training may bring model regularization and improve the model robustness thanks to their complementary properties. 3) Novel one-pass joint decoding methods using CTC, attention, and RNN-T further improves the performance. The experimental results showed that the proposed model consistently reduced the WER.
translated by 谷歌翻译
Connectionist时间分类(CTC)的模型很有吸引力,因为它们在自动语音识别(ASR)中的快速推断。语言模型(LM)集成方法(例如浅融合和重新恢复)可以通过利用文本语料库的知识来提高基于CTC的ASR的识别准确性。但是,它们大大减慢了CTC的推论。在这项研究中,我们建议提炼基于CTC的ASR的BERT知识,从而扩展了我们先前针对基于注意的ASR的研究。基于CTC的ASR在训练过程中学习了BERT的知识,并且在测试过程中不使用BERT,从而维持CTC的快速推断。与基于注意力的模型不同,基于CTC的模型做出了框架级预测,因此它们需要与BERT的令牌级预测进行蒸馏。我们建议通过计算最合理的CTC路径来获得比对。对自发日语(CSJ)和TED-LIUM2语料库的实验评估表明,我们的方法改善了基于CTC的ASR的性能,而无需推理速度成本。
translated by 谷歌翻译
最近,卷积增强的变压器(构象异构体)在自动语音识别(ASR)中显示出令人鼓舞的结果,表现优于先前发表的最佳变压器传感器。在这项工作中,我们认为编码器和解码器中每个块的输出信息并不完全包容,换句话说,它们的输出信息可能是互补的。我们研究如何以参数效率的方式利用每个块的互补信息,并且可以预期这可能会导致更强的性能。因此,我们提出了刻板的变压器以进行语音识别,名为BlockFormer。我们已经实现了两个块集合方法:块输出的基本加权总和(基本WSBO),以及挤压和激气模块到块输出的加权总和(SE-WSBO)。实验已经证明,阻滞剂在Aishell-1上大大优于基于最新的构象模型,我们的模型在不使用语言模型的情况下达到了4.35 \%的CER,并且在4.10 \%上具有外部语言模型的4.10 \%测试集。
translated by 谷歌翻译
最近,语音界正在看到从基于深神经网络的混合模型移动到自动语音识别(ASR)的端到端(E2E)建模的显着趋势。虽然E2E模型在大多数基准测试中实现最先进的,但在ASR精度方面,混合模型仍然在当前的大部分商业ASR系统中使用。有很多实际的因素会影响生产模型部署决定。传统的混合模型,用于数十年的生产优化,通常擅长这些因素。在不为所有这些因素提供优异的解决方案,E2E模型很难被广泛商业化。在本文中,我们将概述最近的E2E模型的进步,专注于解决行业视角的挑战技术。
translated by 谷歌翻译
基于全注意力的变压器体系结构的强大建模能力通常会导致过度拟合,并且 - 对于自然语言处理任务,导致自动回归变压器解码器中隐式学习的内部语言模型,使外部语言模型的集成变得复杂。在本文中,我们探索了放松的注意力,对注意力的重量进行了简单易于实现的平滑平滑,从编码器。其次,我们表明它自然支持外部语言模型的整合,因为它通过放松解码器中的交叉注意来抑制隐式学习的内部语言模型。我们证明了在几项任务中放松注意力的好处,并与最近的基准方法相结合,并明显改善。具体而言,我们超过了最大的最大公共唇部阅读LRS3基准的26.90%单词错误率的先前最新性能,单词错误率为26.31%,并且我们达到了最佳表现的BLEU分数37.67在IWSLT14(de $ \ rightarrow $ en)的机器翻译任务没有外部语言模型,几乎没有其他模型参数。代码和模型将公开可用。
translated by 谷歌翻译
设备的端到端(E2E)模型已显示出对质量和延迟的英语语音搜索任务的常规模型的改进。 E2E模型还显示了多语言自动语音识别(ASR)的有希望的结果。在本文中,我们将以前的容量解决方案扩展到流应用程序,并提出流媒体多语言E2E ASR系统,该系统在设备上完全运行,质量和延迟与单个单语言模型相当。为了实现这一目标,我们提出了一个编码器端量模型和一个终端(EOU)联合层,以提高质量和延迟权衡。我们的系统以语言不可知论的方式构建,允许它实时支持本条件的代码切换。为了解决大型模型的可行性问题,我们进行了设备分析,并用最近开发的嵌入解码器代替了耗时的LSTM解码器。通过这些更改,我们设法在不到实时的时间内在移动设备上运行了这样的系统。
translated by 谷歌翻译
The neural transducer is an end-to-end model for automatic speech recognition (ASR). While the model is well-suited for streaming ASR, the training process remains challenging. During training, the memory requirements may quickly exceed the capacity of state-of-the-art GPUs, limiting batch size and sequence lengths. In this work, we analyze the time and space complexity of a typical transducer training setup. We propose a memory-efficient training method that computes the transducer loss and gradients sample by sample. We present optimizations to increase the efficiency and parallelism of the sample-wise method. In a set of thorough benchmarks, we show that our sample-wise method significantly reduces memory usage, and performs at competitive speed when compared to the default batched computation. As a highlight, we manage to compute the transducer loss and gradients for a batch size of 1024, and audio length of 40 seconds, using only 6 GB of memory.
translated by 谷歌翻译
口语理解(SLU)系统提取文本成绩单和语义与意图和插槽相关的语言。 SLU系统通常由(1)自动语音识别(ASR)模块组成,(2)接口来自ASR相关输出的接口模块,以及(3)自然语言理解(NLU)模块。 SLU系统中的接口随附文本转录或更丰富的信息(例如从ASR到NLU)的信息。在本文中,我们研究界面如何影响与口语理解的联合培训。最值得注意的是,我们在公开可用的50小时SLURP数据集中获得了最新结果。我们首先利用通过文本界面连接的大型ASR和NLU模型,然后通过序列损耗函数共同训练这两个模型。对于未利用预位模型的场景,使用更丰富的神经界面通过联合序列损失训练获得了最佳结果。最后,我们显示了利用预期模型随培训数据规模增加的总体减少影响。
translated by 谷歌翻译