最近,自我监督的神经语言模型最近已应用于生物序列数据,进步的结构,功能和突变效应预测。一些蛋白质语言模型,包括MSA变压器和Alphafold的Evoformer,将进化相关蛋白的多个序列比对作为输入。 MSA Transformer的行专注的简单组合导致了最新的无监督结构接触预测。我们证明,MSA变压器柱浓度的简单和通用组合与MSA中序列之间的锤距距离密切相关。因此,基于MSA的语言模型编码详细的系统发育关系。我们进一步表明,这些模型可以将编码功能和结构约束的共同进化信号与反映历史意义的系统发育相关性分开。为了评估这一点,我们从POTTS模型中生成了在天然MSA训练的POTTS模型的合成MSA。我们发现,当使用MSA变压器与推断的POTTS模型时,无监督的接触预测对系统发育噪声的弹性更大。
translated by 谷歌翻译
The prediction of protein structures from sequences is an important task for function prediction, drug design, and related biological processes understanding. Recent advances have proved the power of language models (LMs) in processing the protein sequence databases, which inherit the advantages of attention networks and capture useful information in learning representations for proteins. The past two years have witnessed remarkable success in tertiary protein structure prediction (PSP), including evolution-based and single-sequence-based PSP. It seems that instead of using energy-based models and sampling procedures, protein language model (pLM)-based pipelines have emerged as mainstream paradigms in PSP. Despite the fruitful progress, the PSP community needs a systematic and up-to-date survey to help bridge the gap between LMs in the natural language processing (NLP) and PSP domains and introduce their methodologies, advancements and practical applications. To this end, in this paper, we first introduce the similarities between protein and human languages that allow LMs extended to pLMs, and applied to protein databases. Then, we systematically review recent advances in LMs and pLMs from the perspectives of network architectures, pre-training strategies, applications, and commonly-used protein databases. Next, different types of methods for PSP are discussed, particularly how the pLM-based architectures function in the process of protein folding. Finally, we identify challenges faced by the PSP community and foresee promising research directions along with the advances of pLMs. This survey aims to be a hands-on guide for researchers to understand PSP methods, develop pLMs and tackle challenging problems in this field for practical purposes.
translated by 谷歌翻译
大规模蛋白质语言模型(PLM)在蛋白质预测任务中的性能提高,范围从3D结构预测到各种功能预测。特别是,Alphafold(一种开创性的AI系统)可能会重塑结构生物学。但是,尚未探索超出结构预测的AlphaFold,Evoformer的PLM模块的效用。在本文中,我们研究了三个流行PLM的表示能力:ESM-1B(单序),MSA转换器(多个序列比对)和Evoformer(结构),并特别关注Evoformer。具体而言,我们旨在回答以下关键问题:(i)作为Alphafold的一部分,Evoformer是否会产生可预测蛋白质功能的表示形式? (ii)如果是的,可以替换ESM-1B和MSA转换器? (iii)这些PLM多少依赖于进化相关的蛋白质数据?在这方面,他们彼此补充吗?我们通过实证研究以及新的见解和结论来比较这些模型。最后,我们发布代码和数据集以获得可重复性。
translated by 谷歌翻译
Deep learning has been widely used for protein engineering. However, it is limited by the lack of sufficient experimental data to train an accurate model for predicting the functional fitness of high-order mutants. Here, we develop SESNet, a supervised deep-learning model to predict the fitness for protein mutants by leveraging both sequence and structure information, and exploiting attention mechanism. Our model integrates local evolutionary context from homologous sequences, the global evolutionary context encoding rich semantic from the universal protein sequence space and the structure information accounting for the microenvironment around each residue in a protein. We show that SESNet outperforms state-of-the-art models for predicting the sequence-function relationship on 26 deep mutational scanning datasets. More importantly, we propose a data augmentation strategy by leveraging the data from unsupervised models to pre-train our model. After that, our model can achieve strikingly high accuracy in prediction of the fitness of protein mutants, especially for the higher order variants (> 4 mutation sites), when finetuned by using only a small number of experimental mutation data (<50). The strategy proposed is of great practical value as the required experimental effort, i.e., producing a few tens of experimental mutation data on a given protein, is generally affordable by an ordinary biochemical group and can be applied on almost any protein.
translated by 谷歌翻译
基于AI的蛋白质结构预测管道(例如AlphaFold2)已达到了几乎实验的准确性。这些高级管道主要依赖于多个序列比对(MSA)和模板作为输入来从同源序列中学习共进化信息。但是,从蛋白质数据库中搜索MSA和模板很耗时,通常需要数十分钟。因此,我们尝试通过仅使用蛋白质的主要序列来探索快速蛋白质结构预测的极限。提出了Helixfold单一的形式将大规模蛋白质语言模型与AlphaFold2的优质几何学习能力相结合。我们提出的方法,Helixfold单个,首先预先培训是一种大规模蛋白质语言模型(PLM),使用了数以千计的主要序列利用自我监督的学习范式,将用作MSA和模板的替代方法共同进化信息。然后,通过将预训练的PLM和AlphaFold2的必需组件组合在一起,我们获得了一个端到端可区分模型,以仅从主要序列预测原子的3D坐标。 Helixfold-Single在数据集CASP14和Cameo中得到了验证,通过基于MSA的方法,具有大型同源家庭的基于MSA的方法,从而实现了竞争精度。此外,与主流管道进行蛋白质结构预测相比,Helixfold单个的时间比主流管道的时间少得多,这表明其在需要许多预测的任务中的潜力。 HelixFold-Single的守则可在https://github.com/paddlepaddle/paddlehelix/tree/dev/dev/pprotein_folding/helixfold-single上获得,我们还在https://paddlehelix.baidu.com上提供稳定的Web服务。 /app/drug/protein-single/prevast。
translated by 谷歌翻译
基于注意的蛋白质序列训练的基于注意力的模型在分类和与人工智能驱动的蛋白质设计相关的分类和生成任务方面取得了令人难以置信的成功。但是,我们对非常大规模的模型和数据在有效的蛋白质模型开发中发挥作用。我们介绍了一套名为progen2的蛋白质语言模型的套件,该模型最高为6.4b参数,并在从基因组,宏基因组和免疫曲目数据库中绘制的不同序列数据集上进行了培训。 GEECEN2模型在捕获观察到的进化序列的分布,生成新型的可行序列并预测蛋白质适应性的情况下显示出最先进的性能,而无需额外的芬特。随着蛋白质序列的大型大小和原始数量继续变得更加广泛,我们的结果表明,越来越多的重点需要放在提供给蛋白质序列模型的数据分布上。我们在https://github.com/salesforce/progen上发布了PECEN2模型和代码。
translated by 谷歌翻译
数据驱动的预测方法可以有效,准确地将蛋白质序列转化为生物活性结构,对于科学研究和治疗发展非常有价值。使用共同进化信息确定准确的折叠格局是现代蛋白质结构预测方法的成功基础。作为最新的状态,AlphaFold2显着提高了准确性,而无需进行明确的共同进化分析。然而,其性能仍然显示出对可用序列同源物的强烈依赖。我们研究了这种依赖性的原因,并提出了一种元生成模型Evogen,以弥补较差的MSA靶标的Alphafold2的表现不佳。 Evogen使我们能够通过降低搜索的MSA或生成虚拟MSA来操纵折叠景观,并帮助Alphafold2在低数据表方面准确地折叠,甚至通过单序预测来实现令人鼓舞的性能。能够用很少的MSA做出准确的预测,不仅可以更好地概括为孤儿序列的Alphafold2,而且使其在高通量应用程序中的使用民主化。此外,Evogen与AlphaFold2结合产生了一种概率结构生成方法,该方法可以探索蛋白质序列的替代构象,并且序列生成的任务意识可区分算法将使包括蛋白质设计在内的其他相关任务受益。
translated by 谷歌翻译
Protein structure prediction aims to determine the three-dimensional shape of a protein from its amino acid sequence 1 . This problem is of fundamental importance to biology as the structure of a protein largely determines its function 2 but can be hard to determine experimentally. In recent years, considerable progress has been made by leveraging genetic information: analysing the co-variation of homologous sequences can allow one to infer which amino acid residues are in contact, which in turn can aid structure prediction 3 . In this work, we show that we can train a neural network to accurately predict the distances between pairs of residues in a protein which convey more about structure than contact predictions. With this information we construct a potential of mean force 4 that can accurately describe the shape of a protein. We find that the resulting potential can be optimised by a simple gradient descent algorithm, to realise structures without the need for complex sampling procedures.The resulting system, named AlphaFold, has been shown to achieve high accuracy, even for sequences with relatively few homologous sequences. In the most recent Critical Assessment of Protein Structure Prediction 5 (CASP13), a blind assessment of the state of the field of protein structure prediction, AlphaFold created high-accuracy structures (with TM-scores † of 0.7 or higher) for 24 out of 43 free modelling domains whereas the next best method, using sampling and contact information, achieved such accuracy for only 14 out of 43 domains.AlphaFold represents a significant advance in protein structure prediction. We expect the increased accuracy of structure predictions for proteins to enable insights in understanding the function and malfunction of these proteins, especially in cases where no homologous proteins have been experimentally determined 7 .Proteins are at the core of most biological processes. Since the function of a protein is dependent on its structure, understanding protein structure has been a grand challenge in biology for decades. While several experimental structure determination techniques have been developed
translated by 谷歌翻译
Proteins play a central role in biology from immune recognition to brain activity. While major advances in machine learning have improved our ability to predict protein structure from sequence, determining protein function from structure remains a major challenge. Here, we introduce Holographic Convolutional Neural Network (H-CNN) for proteins, which is a physically motivated machine learning approach to model amino acid preferences in protein structures. H-CNN reflects physical interactions in a protein structure and recapitulates the functional information stored in evolutionary data. H-CNN accurately predicts the impact of mutations on protein function, including stability and binding of protein complexes. Our interpretable computational model for protein structure-function maps could guide design of novel proteins with desired function.
translated by 谷歌翻译
Geometric deep learning has recently achieved great success in non-Euclidean domains, and learning on 3D structures of large biomolecules is emerging as a distinct research area. However, its efficacy is largely constrained due to the limited quantity of structural data. Meanwhile, protein language models trained on substantial 1D sequences have shown burgeoning capabilities with scale in a broad range of applications. Nevertheless, no preceding studies consider combining these different protein modalities to promote the representation power of geometric neural networks. To address this gap, we make the foremost step to integrate the knowledge learned by well-trained protein language models into several state-of-the-art geometric networks. Experiments are evaluated on a variety of protein representation learning benchmarks, including protein-protein interface prediction, model quality assessment, protein-protein rigid-body docking, and binding affinity prediction, leading to an overall improvement of 20% over baselines and the new state-of-the-art performance. Strong evidence indicates that the incorporation of protein language models' knowledge enhances geometric networks' capacity by a significant margin and can be generalized to complex tasks.
translated by 谷歌翻译
RNA结构的确定和预测可以促进靶向RNA的药物开发和可用的共性元素设计。但是,由于RNA的固有结构灵活性,所有三种主流结构测定方法(X射线晶体学,NMR和Cryo-EM)在解决RNA结构时会遇到挑战,这导致已解决的RNA结构的稀缺性。计算预测方法作为实验技术的补充。但是,\ textit {de从头}的方法都不基于深度学习,因为可用的结构太少。取而代之的是,他们中的大多数采用了耗时的采样策略,而且它们的性能似乎达到了高原。在这项工作中,我们开发了第一种端到端的深度学习方法E2FOLD-3D,以准确执行\ textit {de de novo} RNA结构预测。提出了几个新的组件来克服数据稀缺性,例如完全不同的端到端管道,二级结构辅助自我鉴定和参数有效的骨干配方。此类设计在独立的,非重叠的RNA拼图测试数据集上进行了验证,并达到平均sub-4 \ aa {}根平方偏差,与最先进的方法相比,它表现出了优越的性能。有趣的是,它在预测RNA复杂结构时也可以取得令人鼓舞的结果,这是先前系统无法完成的壮举。当E2FOLD-3D与实验技术耦合时,RNA结构预测场可以大大提高。
translated by 谷歌翻译
无监督的机器学习的目的是删除复杂的高维数据的表示形式,从而解释数据中的重要潜在因素以及操纵它们以生成具有理想功能的新数据。这些方法通常依赖于对抗方案,在该方案中,对代表进行调整以避免歧视者能够重建特定的数据信息(标签)。我们提出了一种简单,有效的方法,即在无需培训对抗歧视器的情况下解开表示形式,并将我们的方法应用于受限的玻尔兹曼机器(RBM),这是最简单的基于代表的生成模型之一。我们的方法依赖于在训练过程中引入对权重的足够约束,这使我们能够将有关标签的信息集中在一小部分潜在变量上。该方法的有效性在MNIST数据集,二维ISING模型和蛋白质家族的分类法上说明了。此外,我们还展示了我们的框架如何从数据的对数模型中计算成本,与其表示形式的删除相关。
translated by 谷歌翻译
蛋白质是人类生命的重要组成部分,其结构对于功能和机制分析很重要。最近的工作表明了AI驱动方法对蛋白质结构预测的潜力。但是,新模型的开发受到数据集和基准测试培训程序的限制。据我们所知,现有的开源数据集远不足以满足现代蛋白质序列相关研究的需求。为了解决这个问题,我们介绍了具有高覆盖率和多样性的第一个百万级蛋白质结构预测数据集,称为PSP。该数据集由570K真实结构序列(10TB)和745K互补蒸馏序列(15TB)组成。此外,我们还提供了该数据集上SOTA蛋白结构预测模型的基准测试训练程序。我们通过参与客串比赛验证该数据集的实用程序进行培训,我们的模特赢得了第一名。我们希望我们的PSP数据集以及培训基准能够为AI驱动的蛋白质相关研究提供更广泛的AI/生物学研究人员社区。
translated by 谷歌翻译
蛋白质 - 蛋白质相互作用(PPI)对于许多生物过程至关重要,其中两种或更多种蛋白质物理地结合在一起以实现其功能。建模PPI对许多生物医学应用有用,例如疫苗设计,抗体治疗和肽药物发现。预先训练蛋白质模型以学习有效的代表对于PPI至关重要。对于PPI的大多数预训练模型是基于序列的,这是基于序列的,该模型是基于氨基酸序列的自然语言处理中使用的语言模型。更先进的作品利用结构感知的预训练技术,利用已知蛋白质结构的联系地图。然而,既不是序列和联系地图都可以完全表征蛋白质的结构和功能,这与PPI问题密切相关。灵感来自这种洞察力,我们提出了一种具有三种方式的多模式蛋白质预训练模型:序列,结构和功能(S2F)。值得注意的是,而不是使用联系地图来学习氨基酸水平刚性结构,而是用重度原子的点云的拓扑复合物编码结构特征。它允许我们的模型不仅仅是基于底部的结构信息,还可以了解侧链。此外,我们的模型包括从文献或手动注释中提取的蛋白质的功能描述中的知识。我们的实验表明,S2F学习蛋白质嵌入物,在包括各种PPI,包括跨物种PPI,抗体 - 抗原亲和预测,抗体中和对SARS-COV-2的抗体中和预测的蛋白质嵌入,以及突变驱动的结合亲和力变化预测。
translated by 谷歌翻译
严重的急性呼吸综合征冠状病毒2(SARS-COV-2)导致持续的大流行感染了21900万人的10/19/21,死亡率为3.6%。自然选择可以产生有利的突变,具有改善的健身优势;然而,所识别的冠状病毒可能是冰山的尖端,并且可能会随着时间的推移出现潜在的致命变体(VOC)。理解可能导致功能或免疫逃逸的新出现VOC和预测突变的模式是迫切需要的。在这里,我们开发了Phylotransformer,一种基于变压器的辨别模型,其与多头自我关注机制接合以模拟可能导致病毒生殖优势的基因突变。为了识别每个输入序列的元件之间的复杂依赖性,Phylotransformer利用高级建模技术,包括从Performer的正交随机特征方法(Hibl +)以及来自双向编码器表示的屏蔽语言模型(MLM)的新颖快速关注变压器(伯特)。从全球倡议检索的1,765,297次遗传序列培训,从全球范围内检测到所有流感数据(GISAID)数据库。首先,我们使用广泛的基线模型比较了新型突变和新颖组合的预测准确性;我们发现,这种具有统计显着性的每个基线方法都优势了。其次,我们检查了受体结合基序(RBM)的每个核苷酸中的突变预测,我们发现我们的预测是精确和准确的。第三,我们预测了N-糖基化位点的修饰,以鉴定与在病毒进化期间可能有利的改变的糖基化相关的突变。我们预计Phylotransformer可以引导积极的疫苗设计,以有效靶向未来SARS-COV-2变体。
translated by 谷歌翻译
Despite significant progress of generative models in the natural sciences, their controllability remains challenging. One fundamentally missing aspect of molecular or protein generative models is an inductive bias that can reflect continuous properties of interest. To that end, we propose the Regression Transformer (RT), a novel method that abstracts regression as a conditional sequence modeling problem. This introduces a new paradigm of multitask language models which seamlessly bridge sequence regression and conditional sequence generation. We thoroughly demonstrate that, despite using a nominal-scale training objective, the RT matches or surpasses the performance of conventional regression models in property prediction tasks of small molecules, proteins and chemical reactions. Critically, priming the same model with continuous properties yields a highly competitive conditional generative model that outperforms specialized approaches in a substructure-constrained, property-driven molecule generation benchmark. Our dichotomous approach is facilitated by a novel, alternating training scheme that enables the model to decorate seed sequences by desired properties, e.g., to optimize reaction yield. In sum, the RT is the first report of a multitask model that concurrently excels at predictive and generative tasks in biochemistry. This finds particular application in property-driven, local exploration of the chemical or protein space and could pave the road toward foundation models in material design. The code to reproduce all experiments of the paper is available at: https://github.com/IBM/regression-transformer
translated by 谷歌翻译
蛋白质与几乎每个生命过程都相关联。因此,分析蛋白质序列的生物学结构和性质对植物勘探至关重要,以及疾病检测和药物发现。传统的蛋白质分析方法往往是劳动密集型和耗时的。深度学习模型的出现使得大量数据的建模数据模式可能。跨学科研究人员已经开始利用深入学习方法来建模大型生物数据集,例如,使用长短期记忆和卷积神经网络进行蛋白质序列分类。在数百万年的进化之后,进化信息在蛋白质序列中编码。灵感来自自然语言和蛋白质序列之间的相似性,我们使用大规模的语言模型来模拟进化尺度蛋白序列,编码表示的蛋白质生物学信息。在令牌级和序列级任务中观察到显着改进,表明我们的大规模模型可以准确地捕获进化尺度单个序列上的预测信息。我们的代码和型号可在https://github.com/thudm/proteinlm获得。
translated by 谷歌翻译
A long-standing goal of machine-learning-based protein engineering is to accelerate the discovery of novel mutations that improve the function of a known protein. We introduce a sampling framework for evolving proteins in silico that supports mixing and matching a variety of unsupervised models, such as protein language models, and supervised models that predict protein function from sequence. By composing these models, we aim to improve our ability to evaluate unseen mutations and constrain search to regions of sequence space likely to contain functional proteins. Our framework achieves this without any model fine-tuning or re-training by constructing a product of experts distribution directly in discrete protein space. Instead of resorting to brute force search or random sampling, which is typical of classic directed evolution, we introduce a fast MCMC sampler that uses gradients to propose promising mutations. We conduct in silico directed evolution experiments on wide fitness landscapes and across a range of different pre-trained unsupervised models, including a 650M parameter protein language model. Our results demonstrate an ability to efficiently discover variants with high evolutionary likelihood as well as estimated activity multiple mutations away from a wild type protein, suggesting our sampler provides a practical and effective new paradigm for machine-learning-based protein engineering.
translated by 谷歌翻译
鉴定新型药物靶标相互作用(DTI)是药物发现中的关键和速率限制步骤。虽然已经提出了深入学习模型来加速识别过程,但我们表明最先进的模型无法概括到新颖(即,从未见过的)结构上。我们首先揭示负责此缺点的机制,展示模型如何依赖于利用蛋白质 - 配体二分网络拓扑的捷径,而不是学习节点特征。然后,我们介绍AI-BIND,这是一个与无监督的预训练的基于网络的采样策略相结合的管道,使我们能够限制注释不平衡并改善新型蛋白质和配体的结合预测。我们通过预测具有结合亲和力的药物和天然化合物对SARS-COV-2病毒蛋白和相关的人蛋白质来说明Ai-reat的值。我们还通过自动扩展模拟和与最近的实验证据进行比较来验证这些预测。总体而言,AI-Bind提供了一种强大的高通量方法来识别药物目标组合,具有成为药物发现中强大工具的可能性。
translated by 谷歌翻译
在三维分子结构上运行的计算方法有可能解决生物学和化学的重要问题。特别地,深度神经网络的重视,但它们在生物分子结构域中的广泛采用受到缺乏系统性能基准或统一工具包的限制,用于与分子数据相互作用。为了解决这个问题,我们呈现Atom3D,这是一个新颖的和现有的基准数据集的集合,跨越几个密钥的生物分子。我们为这些任务中的每一个实施多种三维分子学习方法,并表明它们始终如一地提高了基于单维和二维表示的方法的性能。结构的具体选择对于性能至关重要,具有涉及复杂几何形状的任务的三维卷积网络,在需要详细位置信息的系统中表现出良好的图形网络,以及最近开发的设备越多的网络显示出显着承诺。我们的结果表明,许多分子问题符合三维分子学习的增益,并且有可能改善许多仍然过分曝光的任务。为了降低进入并促进现场进一步发展的障碍,我们还提供了一套全面的DataSet处理,模型培训和在我们的开源ATOM3D Python包中的评估工具套件。所有数据集都可以从https://www.atom3d.ai下载。
translated by 谷歌翻译