Graph Machine Learning(GraphMl)将经典的机器学习推广到不规则的图形域,它享有最近的文艺复兴时期,导致了令人眼花and乱的模型及其在多个域中的应用。随着政府机构对可信赖的AI系统的敏感领域和法规的日益适用性,研究人员已开始研究透明度和图形学习的隐私问题。但是,这些主题主要是独立研究的。在该立场论文中,我们提供了有关GraphMl隐私和透明度相互作用的统一观点。
translated by 谷歌翻译
隐私性和解释性是实现值得信赖的机器学习的两种重要成分。我们通过图形重建攻击研究了图机学习中这两个方面的相互作用。这里的对手的目的是重建给定模型解释的训练数据的图形结构。根据对手可用的不同种类的辅助信息,我们提出了几种图形重建攻击。我们表明,事后功能解释的其他知识大大提高了这些攻击的成功率。此外,我们详细研究了攻击性能相对于三种不同类别的图形神经网络的解释方法的差异:基于梯度,基于扰动和基于替代模型的方法。虽然基于梯度的解释在图形结构方面显示最多,但我们发现这些解释并不总是在实用程序上得分很高。对于其他两类的解释,隐私泄漏随着解释实用程序的增加而增加。最后,我们提出了基于随机响应机制的防御,以释放大大降低攻击成功率的解释。我们的匿名代码可用。
translated by 谷歌翻译
在本文中,我们研究了具有差异隐私(DP)的学习图神经网络(GNN)的问题。我们提出了一种基于聚合扰动(GAP)的新型差异私有GNN,该GNN为GNN的聚合函数添加了随机噪声,以使单个边缘(边缘级隐私)或单个节点的存在统计上的存在及其所有邻接边缘( - 级别的隐私)。 GAP的新体系结构是根据私人学习的细节量身定制的,由三个单独的模块组成:(i)编码器模块,我们在不依赖边缘信息的情况下学习私人节点嵌入; (ii)聚合模块,其中我们根据图结构计算嘈杂的聚合节点嵌入; (iii)分类模块,我们在私有聚合上训练神经网络进行节点分类,而无需进一步查询图表。 GAP比以前的方法的主要优势在于,它可以从多跳社区的聚合中受益,并保证边缘级别和节点级别的DP不仅用于培训,而且可以推断出培训的隐私预算以外的额外费用。我们使用R \'Enyi DP来分析GAP的正式隐私保证,并在三个真实世界图数据集上进行经验实验。我们证明,与最先进的DP-GNN方法和天真的MLP基线相比,GAP提供了明显更好的准确性私人权衡权衡。
translated by 谷歌翻译
解释机器学习决策的问题是经过深入研究和重要的。我们对一种涉及称为图形神经网络的图形数据的特定类型的机器学习模型感兴趣。众所周知,由于缺乏公认的基准,评估图形神经网络(GNN)的可解释性方法是具有挑战性的。鉴于GNN模型,存在几种可解释性方法来解释具有多种(有时相互矛盾的)方法论的GNN模型。在本文中,我们提出了一个基准,用于评估称为Bagel的GNN的解释性方法。在百吉饼中,我们首先提出了四种不同的GNN解释评估制度 - 1)忠诚,2)稀疏性,3)正确性。 4)合理性。我们在现有文献中调和多个评估指标,并涵盖了各种概念以进行整体评估。我们的图数据集范围从引文网络,文档图,到分子和蛋白质的图。我们对四个GNN模型和九个有关节点和图形分类任务的事后解释方法进行了广泛的实证研究。我们打开基准和参考实现,并在https://github.com/mandeep-rathee/bagel-benchmark上提供它们。
translated by 谷歌翻译
在培训敏感和个人数据时,机器学习模型的隐私风险是主要问题。我们讨论数据隐私与可信赖的机器学习的其余目标之间的权衡(尤其是公平,鲁棒性和解释性)。
translated by 谷歌翻译
Graph Neural Networks (GNNs) are a powerful tool for machine learning on graphs. GNNs combine node feature information with the graph structure by recursively passing neural messages along edges of the input graph. However, incorporating both graph structure and feature information leads to complex models and explaining predictions made by GNNs remains unsolved. Here we propose GNNEXPLAINER, the first general, model-agnostic approach for providing interpretable explanations for predictions of any GNN-based model on any graph-based machine learning task. Given an instance, GNNEXPLAINER identifies a compact subgraph structure and a small subset of node features that have a crucial role in GNN's prediction. Further, GNNEXPLAINER can generate consistent and concise explanations for an entire class of instances. We formulate GNNEXPLAINER as an optimization task that maximizes the mutual information between a GNN's prediction and distribution of possible subgraph structures. Experiments on synthetic and real-world graphs show that our approach can identify important graph structures as well as node features, and outperforms alternative baseline approaches by up to 43.0% in explanation accuracy. GNNEXPLAINER provides a variety of benefits, from the ability to visualize semantically relevant structures to interpretability, to giving insights into errors of faulty GNNs.
translated by 谷歌翻译
图形神经网络(GNNS)概括了图形数据上的传统深度神经网络,在几个图形分析任务上取得了最先进的性能。我们专注于训练有素的GNN模型如何泄露有关他们培训的\ emph {成员}节点的信息。我们介绍了两个现实的设置,以便在GNN上执行员工推理(MI)攻击。在选择利用培训模型的后索(黑匣子访问)的最简单可能的攻击模型时,我们彻底分析了GNN和数据集的属性,这些数据集决定了对MI攻击的鲁棒性的差异。虽然在传统的机器学习模型中,过度装备被认为是这种泄漏的主要原因,我们表明,在GNN中,额外的结构信息是主要的贡献因素。我们在四个代表性GNN模型上进行了广泛的实验,我们支持我们的结果。为防止MI攻击GNN,我们提出了两种有效的防御,明显将攻击者推断显着降低了60%,而不会降低目标模型的性能。我们的代码可在https://github.com/iyempissy/rebmigraph获得。
translated by 谷歌翻译
标记为图形结构数据的分类任务具有许多重要的应用程序,从社交建议到财务建模。深度神经网络越来越多地用于图形上的节点分类,其中具有相似特征的节点必须给出相同的标签。图形卷积网络(GCN)是如此广泛研究的神经网络体系结构,在此任务上表现良好。但是,对GCN的强大链接攻击攻击最近表明,即使对训练有素的模型进行黑框访问,培训图中也存在哪些链接(或边缘)。在本文中,我们提出了一种名为LPGNET的新神经网络体系结构,用于对具有隐私敏感边缘的图形进行培训。 LPGNET使用新颖的设计为训练过程中的图形结构提供了新颖的设计,为边缘提供了差异隐私(DP)保证。我们从经验上表明,LPGNET模型通常位于提供隐私和效用之间的最佳位置:它们比使用不使用边缘信息的“琐碎”私人体系结构(例如,香草MLP)和针对现有的链接策略攻击更好的弹性可以提供更好的实用性。使用完整边缘结构的香草GCN。 LPGNET还与DPGCN相比,LPGNET始终提供更好的隐私性权衡,这是我们大多数评估的数据集中将差异隐私改造为常规GCN的最新机制。
translated by 谷歌翻译
图形神经网络(GNN)已证明图形数据的预测性能显着提高。同时,这些模型的预测通常很难解释。在这方面,已经做出了许多努力来从gnnexplainer,XGNN和PGEXPlainer等角度解释这些模型的预测机制。尽管这样的作品呈现出系统的框架来解释GNN,但对于可解释的GNN的整体评论是不可用的。在这项调查中,我们介绍了针对GNN开发的解释性技术的全面综述。我们专注于可解释的图形神经网络,并根据可解释方法的使用对它们进行分类。我们进一步为GNNS解释提供了共同的性能指标,并指出了几个未来的研究指标。
translated by 谷歌翻译
可解释的人工智能(XAI)是提高机器学习(ML)管道透明度的有前途解决方案。我们将开发和利用XAI方法用于防御和进攻性网络安全任务的研究越来越多(但分散的)缩影。我们确定3个网络安全利益相关者,即模型用户,设计师和对手,将XAI用于ML管道中的5个不同目标,即1)启用XAI的决策支持,2)将XAI应用于安全任务,3)3)通过模型验证通过模型验证xai,4)解释验证和鲁棒性,以及5)对解释的进攻使用。我们进一步分类文献W.R.T.目标安全域。我们对文献的分析表明,许多XAI应用程序的设计都几乎没有了解如何将其集成到分析师工作流程中 - 仅在14%的情况下进行了解释评估的用户研究。文献也很少解开各种利益相关者的角色。特别是,在安全文献中将模型设计师的作用最小化。为此,我们提出了一个说明性用例,突显了模型设计师的作用。我们证明了XAI可以帮助模型验证和可能导致错误结论的案例。系统化和用例使我们能够挑战几个假设,并提出可以帮助塑造网络安全XAI未来的开放问题
translated by 谷歌翻译
从公共机器学习(ML)模型中泄漏数据是一个越来越重要的领域,因为ML的商业和政府应用可以利用多个数据源,可能包括用户和客户的敏感数据。我们对几个方面的当代进步进行了全面的调查,涵盖了非自愿数据泄漏,这对ML模型很自然,潜在的恶毒泄漏是由隐私攻击引起的,以及目前可用的防御机制。我们专注于推理时间泄漏,这是公开可用模型的最可能场景。我们首先在不同的数据,任务和模型体系结构的背景下讨论什么是泄漏。然后,我们提出了跨非自愿和恶意泄漏的分类法,可用的防御措施,然后进行当前可用的评估指标和应用。我们以杰出的挑战和开放性的问题结束,概述了一些有希望的未来研究方向。
translated by 谷歌翻译
Uncovering rationales behind predictions of graph neural networks (GNNs) has received increasing attention over recent years. Instance-level GNN explanation aims to discover critical input elements, like nodes or edges, that the target GNN relies upon for making predictions. Though various algorithms are proposed, most of them formalize this task by searching the minimal subgraph which can preserve original predictions. However, an inductive bias is deep-rooted in this framework: several subgraphs can result in the same or similar outputs as the original graphs. Consequently, they have the danger of providing spurious explanations and fail to provide consistent explanations. Applying them to explain weakly-performed GNNs would further amplify these issues. To address this problem, we theoretically examine the predictions of GNNs from the causality perspective. Two typical reasons of spurious explanations are identified: confounding effect of latent variables like distribution shift, and causal factors distinct from the original input. Observing that both confounding effects and diverse causal rationales are encoded in internal representations, we propose a simple yet effective countermeasure by aligning embeddings. Concretely, concerning potential shifts in the high-dimensional space, we design a distribution-aware alignment algorithm based on anchors. This new objective is easy to compute and can be incorporated into existing techniques with no or little effort. Theoretical analysis shows that it is in effect optimizing a more faithful explanation objective in design, which further justifies the proposed approach.
translated by 谷歌翻译
许多数据挖掘任务依靠图来模拟个人(节点)之间的关系结构。由于关系数据通常很敏感,因此迫切需要评估图形数据中的隐私风险。对数据分析模型的著名隐私攻击是模型反转攻击,该攻击旨在推断培训数据集中的敏感数据并引起极大的隐私问题。尽管它在类似网格的域中取得了成功,但直接应用模型反转攻击(例如图形)导致攻击性能差。这主要是由于未能考虑图的唯一属性。为了弥合这一差距,我们对模型反转攻击对图神经网络(GNNS)进行了系统研究,这是本文中最新的图形分析工具之一。首先,在攻击者可以完全访问目标GNN模型的白色框设置中,我们提出GraphMi来推断私人训练图数据。具体而言,在GraphMi中,提出了一个投影梯度模块来应对图边的离散性并保持图形特征的稀疏性和平滑度。图形自动编码器模块用于有效利用边缘推理的图形拓扑,节点属性和目标模型参数。随机采样模块最终可以采样离散边缘。此外,在攻击者只能查询GNN API并接收分类结果的硬标签黑框设置中,我们根据梯度估计和增强学习(RL-GraphMI)提出了两种方法。我们的实验结果表明,此类防御措施没有足够的有效性,并要求对隐私攻击进行更先进的防御能力。
translated by 谷歌翻译
深度学习方法正在实现许多人工智能任务上的不断增长。深层模型的一个主要局限性是它们不适合可解释性。可以通过开发事后技术来解释预测,从而产生解释性领域,从而规避这种限制。最近,关于图像和文本的深层模型的解释性取得了重大进展。在图数据的领域,图形神经网络(GNN)及其解释性正在迅速发展。但是,既没有对GNN解释性方法的统一处理,也没有标准的基准和测试床。在这项调查中,我们提供了当前GNN解释性方法的统一和分类观点。我们对这一主题的统一和分类治疗对现有方法的共同性和差异阐明了灯光,并为进一步的方法论发展奠定了基础。为了促进评估,我们生成了一组专门用于GNN解释性的基准图数据集。我们总结了当前的数据集和指标,以评估GNN的解释性。总的来说,这项工作提供了GNN解释性和评估标准化测试床的统一方法论。
translated by 谷歌翻译
许多真实数据以图形的形式出现。图表神经网络(GNNS)是一个新的机器学习(ML)模型,已建议完全利用图表数据来构建强大的应用程序。特别地,可以概括到看不见的数据的电感GNN成为主流。机器学习模型在各种任务中表现出很大的潜力,并已在许多真实情景中部署。要培训良好的模型,需要大量的数据以及计算资源,从而导致有价值的知识产权。以前的研究表明,ML模型容易窃取攻击模型,旨在窃取目标模型的功能。然而,大多数人都专注于用图像和文本接受培训的模型。另一方面,对于用图表数据,即GNNS接受培训的模型,已经支付了很少的注意。在本文中,我们通过提出针对电感GNN的第一个模型窃取攻击来填补差距。我们系统地定义了威胁模型,并根据对手的背景知识和目标模型的响应提出六次攻击。我们对六个基准数据集的评估显示,拟议的模型窃取针对GNN的攻击实现了有希望的性能。
translated by 谷歌翻译
Motivated by mitigating potentially harmful impacts of technologies, the AI community has formulated and accepted mathematical definitions for certain pillars of accountability: e.g. privacy, fairness, and model transparency. Yet, we argue this is fundamentally misguided because these definitions are imperfect, siloed constructions of the human values they hope to proxy, while giving the guise that those values are sufficiently embedded in our technologies. Under popularized methods, tensions arise when practitioners attempt to achieve each pillar of fairness, privacy, and transparency in isolation or simultaneously. In this position paper, we push for redirection. We argue that the AI community needs to consider all the consequences of choosing certain formulations of these pillars -- not just the technical incompatibilities, but also the effects within the context of deployment. We point towards sociotechnical research for frameworks for the latter, but push for broader efforts into implementing these in practice.
translated by 谷歌翻译
Graph neural networks (GNNs) are susceptible to privacy inference attacks (PIAs), given their ability to learn joint representation from features and edges among nodes in graph data. To prevent privacy leakages in GNNs, we propose a novel heterogeneous randomized response (HeteroRR) mechanism to protect nodes' features and edges against PIAs under differential privacy (DP) guarantees without an undue cost of data and model utility in training GNNs. Our idea is to balance the importance and sensitivity of nodes' features and edges in redistributing the privacy budgets since some features and edges are more sensitive or important to the model utility than others. As a result, we derive significantly better randomization probabilities and tighter error bounds at both levels of nodes' features and edges departing from existing approaches, thus enabling us to maintain high data utility for training GNNs. An extensive theoretical and empirical analysis using benchmark datasets shows that HeteroRR significantly outperforms various baselines in terms of model utility under rigorous privacy protection for both nodes' features and edges. That enables us to defend PIAs in DP-preserving GNNs effectively.
translated by 谷歌翻译
作为当今最受欢迎的机器学习模型之一,Graph神经网络(GNN)最近引起了激烈的兴趣,其解释性也引起了人们的兴趣。用户对更好地了解GNN模型及其结果越来越感兴趣。不幸的是,当今的GNN评估框架通常依赖于合成数据集,从而得出有限范围的结论,因为问题实例缺乏复杂性。由于GNN模型被部署到更关键的任务应用程序中,因此我们迫切需要使用GNN解释性方法的共同评估协议。在本文中,据我们最大的知识,我们提出了针对GNN解释性的第一个系统评估框架,考虑了三种不同的“用户需求”的解释性:解释焦点,掩盖性质和掩蔽转换。我们提出了一个独特的指标,该指标将忠诚度措施结合在一起,并根据其足够或必要的质量对解释进行分类。我们将自己范围用于节点分类任务,并比较GNN的输入级解释性领域中最具代表性的技术。对于广泛使用的合成基准测试,令人惊讶的是,诸如个性化Pagerank之类的浅水技术在最小计算时间内具有最佳性能。但是,当图形结构更加复杂并且节点具有有意义的特征时,根据我们的评估标准,基于梯度的方法,尤其是显着性。但是,没有人在所有评估维度上占主导地位,而且总会有一个权衡。我们在eBay图上的案例研究中进一步应用了我们的评估协议,以反映生产环境。
translated by 谷歌翻译
模型说明为训练有素的机器学习模型的黑框行为提供了透明度,向模型构建器提供了透明度。它们表明了不同输入属性对其相应模型预测的影响。对输入的解释的依赖性引发了敏感用户数据的隐私问题。但是,当前文献对模型解释的隐私风险的讨论有限。我们专注于属性推理攻击的特定隐私风险,其中对手会在其模型解释的情况下侵犯输入的敏感属性(例如种族和性别)。我们在两个威胁模型中设计了针对模型解释的第一个属性推理攻击,其中模型构建器(a)都包含训练数据和输入中的敏感属性,或者((b)通过不在培训数据和输入中审查敏感属性。我们评估了对四个基准数据集和四种最先进算法的拟议攻击。我们表明,对手可以准确地从两个威胁模型中的解释中成功推断出敏感属性的价值。此外,即使仅利用与敏感属性相对应的解释,攻击也是成功的。这些表明,我们的攻击有效地反对解释,并对数据隐私构成了实际威胁。在将模型预测(通过先前攻击利用的攻击表面)与解释相结合时,我们注意到攻击成功并不能改善。此外,与仅利用模型预测相比,利用模型解释的攻击成功更好。这些表明模型解释是为对手开发的强大攻击表面。
translated by 谷歌翻译
过去十年已经看到人工智能(AI)的显着进展,这导致了用于解决各种问题的算法。然而,通过增加模型复杂性并采用缺乏透明度的黑匣子AI模型来满足这种成功。为了响应这种需求,已经提出了说明的AI(Xai)以使AI更透明,从而提高关键结构域中的AI。虽然有几个关于Xai主题的Xai主题的评论,但在Xai中发现了挑战和潜在的研究方向,这些挑战和研究方向被分散。因此,本研究为Xai组织的挑战和未来的研究方向提出了系统的挑战和未来研究方向:(1)基于机器学习生命周期的Xai挑战和研究方向,基于机器的挑战和研究方向阶段:设计,开发和部署。我们认为,我们的META调查通过为XAI地区的未来探索指导提供了XAI文学。
translated by 谷歌翻译