图形神经网络(GNN)已证明图形数据的预测性能显着提高。同时,这些模型的预测通常很难解释。在这方面,已经做出了许多努力来从gnnexplainer,XGNN和PGEXPlainer等角度解释这些模型的预测机制。尽管这样的作品呈现出系统的框架来解释GNN,但对于可解释的GNN的整体评论是不可用的。在这项调查中,我们介绍了针对GNN开发的解释性技术的全面综述。我们专注于可解释的图形神经网络,并根据可解释方法的使用对它们进行分类。我们进一步为GNNS解释提供了共同的性能指标,并指出了几个未来的研究指标。
translated by 谷歌翻译
深度学习方法正在实现许多人工智能任务上的不断增长。深层模型的一个主要局限性是它们不适合可解释性。可以通过开发事后技术来解释预测,从而产生解释性领域,从而规避这种限制。最近,关于图像和文本的深层模型的解释性取得了重大进展。在图数据的领域,图形神经网络(GNN)及其解释性正在迅速发展。但是,既没有对GNN解释性方法的统一处理,也没有标准的基准和测试床。在这项调查中,我们提供了当前GNN解释性方法的统一和分类观点。我们对这一主题的统一和分类治疗对现有方法的共同性和差异阐明了灯光,并为进一步的方法论发展奠定了基础。为了促进评估,我们生成了一组专门用于GNN解释性的基准图数据集。我们总结了当前的数据集和指标,以评估GNN的解释性。总的来说,这项工作提供了GNN解释性和评估标准化测试床的统一方法论。
translated by 谷歌翻译
深层神经网络以其对各种机器学习和人工智能任务的精湛处理而闻名。但是,由于其过度参数化的黑盒性质,通常很难理解深层模型的预测结果。近年来,已经提出了许多解释工具来解释或揭示模型如何做出决策。在本文中,我们回顾了这一研究,并尝试进行全面的调查。具体来说,我们首先介绍并阐明了人们通常会感到困惑的两个基本概念 - 解释和解释性。为了解决解释中的研究工作,我们通过提出新的分类法来阐述许多解释算法的设计。然后,为了了解解释结果,我们还调查了评估解释算法的性能指标。此外,我们总结了使用“可信赖”解释算法评估模型的解释性的当前工作。最后,我们审查并讨论了深层模型的解释与其他因素之间的联系,例如对抗性鲁棒性和从解释中学习,并介绍了一些开源库,以解释算法和评估方法。
translated by 谷歌翻译
作为当今最受欢迎的机器学习模型之一,Graph神经网络(GNN)最近引起了激烈的兴趣,其解释性也引起了人们的兴趣。用户对更好地了解GNN模型及其结果越来越感兴趣。不幸的是,当今的GNN评估框架通常依赖于合成数据集,从而得出有限范围的结论,因为问题实例缺乏复杂性。由于GNN模型被部署到更关键的任务应用程序中,因此我们迫切需要使用GNN解释性方法的共同评估协议。在本文中,据我们最大的知识,我们提出了针对GNN解释性的第一个系统评估框架,考虑了三种不同的“用户需求”的解释性:解释焦点,掩盖性质和掩蔽转换。我们提出了一个独特的指标,该指标将忠诚度措施结合在一起,并根据其足够或必要的质量对解释进行分类。我们将自己范围用于节点分类任务,并比较GNN的输入级解释性领域中最具代表性的技术。对于广泛使用的合成基准测试,令人惊讶的是,诸如个性化Pagerank之类的浅水技术在最小计算时间内具有最佳性能。但是,当图形结构更加复杂并且节点具有有意义的特征时,根据我们的评估标准,基于梯度的方法,尤其是显着性。但是,没有人在所有评估维度上占主导地位,而且总会有一个权衡。我们在eBay图上的案例研究中进一步应用了我们的评估协议,以反映生产环境。
translated by 谷歌翻译
Graph Neural Networks (GNNs) are a powerful tool for machine learning on graphs. GNNs combine node feature information with the graph structure by recursively passing neural messages along edges of the input graph. However, incorporating both graph structure and feature information leads to complex models and explaining predictions made by GNNs remains unsolved. Here we propose GNNEXPLAINER, the first general, model-agnostic approach for providing interpretable explanations for predictions of any GNN-based model on any graph-based machine learning task. Given an instance, GNNEXPLAINER identifies a compact subgraph structure and a small subset of node features that have a crucial role in GNN's prediction. Further, GNNEXPLAINER can generate consistent and concise explanations for an entire class of instances. We formulate GNNEXPLAINER as an optimization task that maximizes the mutual information between a GNN's prediction and distribution of possible subgraph structures. Experiments on synthetic and real-world graphs show that our approach can identify important graph structures as well as node features, and outperforms alternative baseline approaches by up to 43.0% in explanation accuracy. GNNEXPLAINER provides a variety of benefits, from the ability to visualize semantically relevant structures to interpretability, to giving insights into errors of faulty GNNs.
translated by 谷歌翻译
与此同时,在可解释的人工智能(XAI)的研究领域中,已经开发了各种术语,动机,方法和评估标准。随着XAI方法的数量大大增长,研究人员以及从业者以及从业者需要一种方法:掌握主题的广度,比较方法,并根据特定用例所需的特征选择正确的XAI方法语境。在文献中,可以找到许多不同细节水平和深度水平的XAI方法分类。虽然他们经常具有不同的焦点,但它们也表现出许多重叠点。本文统一了这些努力,并提供了XAI方法的分类,这是关于目前研究中存在的概念的概念。在结构化文献分析和元研究中,我们识别并审查了XAI方法,指标和方法特征的50多个最引用和最新的调查。总结在调查调查中,我们将文章的术语和概念合并为统一的结构化分类。其中的单一概念总计超过50个不同的选择示例方法,我们相应地分类。分类学可以为初学者,研究人员和从业者提供服务作为XAI方法特征和方面的参考和广泛概述。因此,它提供了针对有针对性的,用例导向的基础和上下文敏感的未来研究。
translated by 谷歌翻译
With the rapid deployment of graph neural networks (GNNs) based techniques into a wide range of applications such as link prediction, node classification, and graph classification the explainability of GNNs has become an indispensable component for predictive and trustworthy decision-making. Thus, it is critical to explain why graph neural network (GNN) makes particular predictions for them to be believed in many applications. Some GNNs explainers have been proposed recently. However, they lack to generate accurate and real explanations. To mitigate these limitations, we propose GANExplainer, based on Generative Adversarial Network (GAN) architecture. GANExplainer is composed of a generator to create explanations and a discriminator to assist with the Generator development. We investigate the explanation accuracy of our models by comparing the performance of GANExplainer with other state-of-the-art methods. Our empirical results on synthetic datasets indicate that GANExplainer improves explanation accuracy by up to 35\% compared to its alternatives.
translated by 谷歌翻译
越来越多的电子健康记录(EHR)数据和深度学习技术进步的越来越多的可用性(DL)已经引发了在开发基于DL的诊断,预后和治疗的DL临床决策支持系统中的研究兴趣激增。尽管承认医疗保健的深度学习的价值,但由于DL的黑匣子性质,实际医疗环境中进一步采用的障碍障碍仍然存在。因此,有一个可解释的DL的新兴需求,它允许最终用户评估模型决策,以便在采用行动之前知道是否接受或拒绝预测和建议。在这篇综述中,我们专注于DL模型在医疗保健中的可解释性。我们首先引入深入解释性的方法,并作为该领域的未来研究人员或临床从业者的方法参考。除了这些方法的细节之外,我们还包括对这些方法的优缺点以及它们中的每个场景都适合的讨论,因此感兴趣的读者可以知道如何比较和选择它们供使用。此外,我们讨论了这些方法,最初用于解决一般域问题,已经适应并应用于医疗保健问题以及如何帮助医生更好地理解这些数据驱动技术。总的来说,我们希望这项调查可以帮助研究人员和从业者在人工智能(AI)和临床领域了解我们为提高其DL模型的可解释性并相应地选择最佳方法。
translated by 谷歌翻译
人工智能(AI)和机器学习(ML)在网络安全挑战中的应用已在行业和学术界的吸引力,部分原因是对关键系统(例如云基础架构和政府机构)的广泛恶意软件攻击。入侵检测系统(IDS)使用某些形式的AI,由于能够以高预测准确性处理大量数据,因此获得了广泛的采用。这些系统托管在组织网络安全操作中心(CSOC)中,作为一种防御工具,可监视和检测恶意网络流,否则会影响机密性,完整性和可用性(CIA)。 CSOC分析师依靠这些系统来决定检测到的威胁。但是,使用深度学习(DL)技术设计的IDS通常被视为黑匣子模型,并且没有为其预测提供理由。这为CSOC分析师造成了障碍,因为他们无法根据模型的预测改善决策。解决此问题的一种解决方案是设计可解释的ID(X-IDS)。这项调查回顾了可解释的AI(XAI)的最先进的ID,目前的挑战,并讨论了这些挑战如何涉及X-ID的设计。特别是,我们全面讨论了黑匣子和白盒方法。我们还在这些方法之间的性能和产生解释的能力方面提出了权衡。此外,我们提出了一种通用体系结构,该建筑认为人类在循环中,该架构可以用作设计X-ID时的指南。研究建议是从三个关键观点提出的:需要定义ID的解释性,需要为各种利益相关者量身定制的解释以及设计指标来评估解释的需求。
translated by 谷歌翻译
人工智能(AI)模型的黑框性质不允许用户理解和有时信任该模型创建的输出。在AI应用程序中,不仅结果,而且结果的决策路径至关重要,此类Black-Box AI模型还不够。可解释的人工智能(XAI)解决了此问题,并定义了用户可解释的一组AI模型。最近,有几种XAI模型是通过在医疗保健,军事,能源,金融和工业领域等各个应用领域的黑盒模型缺乏可解释性和解释性来解决有关的问题。尽管XAI的概念最近引起了广泛关注,但它与物联网域的集成尚未完全定义。在本文中,我们在物联网域范围内使用XAI模型对最近的研究进行了深入和系统的综述。我们根据其方法和应用领域对研究进行分类。此外,我们旨在专注于具有挑战性的问题和开放问题,并为未来的方向指导开发人员和研究人员进行未来的未来调查。
translated by 谷歌翻译
过去十年已经看到人工智能(AI)的显着进展,这导致了用于解决各种问题的算法。然而,通过增加模型复杂性并采用缺乏透明度的黑匣子AI模型来满足这种成功。为了响应这种需求,已经提出了说明的AI(Xai)以使AI更透明,从而提高关键结构域中的AI。虽然有几个关于Xai主题的Xai主题的评论,但在Xai中发现了挑战和潜在的研究方向,这些挑战和研究方向被分散。因此,本研究为Xai组织的挑战和未来的研究方向提出了系统的挑战和未来研究方向:(1)基于机器学习生命周期的Xai挑战和研究方向,基于机器的挑战和研究方向阶段:设计,开发和部署。我们认为,我们的META调查通过为XAI地区的未来探索指导提供了XAI文学。
translated by 谷歌翻译
尽管有无数的同伴审查的论文,证明了新颖的人工智能(AI)基于大流行期间的Covid-19挑战的解决方案,但很少有临床影响。人工智能在Covid-19大流行期间的影响因缺乏模型透明度而受到极大的限制。这种系统审查考察了在大流行期间使用可解释的人工智能(Xai)以及如何使用它可以克服现实世界成功的障碍。我们发现,Xai的成功使用可以提高模型性能,灌输信任在最终用户,并提供影响用户决策所需的值。我们将读者介绍给常见的XAI技术,其实用程序以及其应用程序的具体例子。 XAI结果的评估还讨论了最大化AI的临床决策支持系统的价值的重要步骤。我们说明了Xai的古典,现代和潜在的未来趋势,以阐明新颖的XAI技术的演变。最后,我们在最近出版物支持的实验设计过程中提供了建议的清单。潜在解决方案的具体示例也解决了AI解决方案期间的共同挑战。我们希望本次审查可以作为提高未来基于AI的解决方案的临床影响的指导。
translated by 谷歌翻译
Artificial intelligence(AI) systems based on deep neural networks (DNNs) and machine learning (ML) algorithms are increasingly used to solve critical problems in bioinformatics, biomedical informatics, and precision medicine. However, complex DNN or ML models that are unavoidably opaque and perceived as black-box methods, may not be able to explain why and how they make certain decisions. Such black-box models are difficult to comprehend not only for targeted users and decision-makers but also for AI developers. Besides, in sensitive areas like healthcare, explainability and accountability are not only desirable properties of AI but also legal requirements -- especially when AI may have significant impacts on human lives. Explainable artificial intelligence (XAI) is an emerging field that aims to mitigate the opaqueness of black-box models and make it possible to interpret how AI systems make their decisions with transparency. An interpretable ML model can explain how it makes predictions and which factors affect the model's outcomes. The majority of state-of-the-art interpretable ML methods have been developed in a domain-agnostic way and originate from computer vision, automated reasoning, or even statistics. Many of these methods cannot be directly applied to bioinformatics problems, without prior customization, extension, and domain adoption. In this paper, we discuss the importance of explainability with a focus on bioinformatics. We analyse and comprehensively overview of model-specific and model-agnostic interpretable ML methods and tools. Via several case studies covering bioimaging, cancer genomics, and biomedical text mining, we show how bioinformatics research could benefit from XAI methods and how they could help improve decision fairness.
translated by 谷歌翻译
With the growing use of graph convolutional neural networks (GCNNs) comes the need for explainability. In this paper, we introduce explainability methods for GCNNs. We develop the graph analogues of three prominent explainability methods for convolutional neural networks: contrastive gradient-based (CG) saliency maps, Class Activation Mapping (CAM), and Excitation Backpropagation (EB) and their variants, gradient-weighted CAM (Grad-CAM) and contrastive EB (c-EB). We show a proof-of-concept of these methods on classification problems in two application domains: visual scene graphs and molecular graphs. To compare the methods, we identify three desirable properties of explanations: (1) their importance to classification, as measured by the impact of occlusions, (2) their contrastivity with respect to different classes, and (3) their sparseness on a graph. We call the corresponding quantitative metrics fidelity, contrastivity, and sparsity and evaluate them for each method. Lastly, we analyze the salient subgraphs obtained from explanations and report frequently occurring patterns.
translated by 谷歌翻译
由于算法预测对人类的影响增加,模型解释性已成为机器学习(ML)的重要问题。解释不仅可以帮助用户了解为什么ML模型做出某些预测,还可以帮助用户了解这些预测如何更改。在本论文中,我们研究了从三个有利位置的ML模型的解释性:算法,用户和教学法,并为解释性问题贡献了一些新颖的解决方案。
translated by 谷歌翻译
能够分析和量化人体或行为特征的系统(称为生物识别系统)正在使用和应用变异性增长。由于其从手工制作的功能和传统的机器学习转变为深度学习和自动特征提取,因此生物识别系统的性能增加到了出色的价值。尽管如此,这种快速进步的成本仍然尚不清楚。由于其不透明度,深层神经网络很难理解和分析,因此,由错误动机动机动机的隐藏能力或决定是潜在的风险。研究人员已经开始将注意力集中在理解深度神经网络及其预测的解释上。在本文中,我们根据47篇论文的研究提供了可解释生物识别技术的当前状态,并全面讨论了该领域的发展方向。
translated by 谷歌翻译
作为图形神经网络(GNNS)在数字病理学中被广泛采用,越来越关注GNN的发出解释模型(解释器),以提高临床决策的透明度。现有的解释者发现与预测相关的解释性子图。然而,这种子图不足以揭示预测的所有关键生物学子结构,因为在去除该子图之后预测将保持不变。因此,解释性子图不仅应该需要预测,而且应该足以揭示用于解释的最具预测区域。这种解释需要测量从不同输入子图传送到预测输出的信息,我们将其定义为信息流。在这项工作中,我们解决了这些关键挑战并提出了IFExplainer,它为GNN产生了必要和充分的解释。为了评估GNN预测中的信息流,我们首先提出了一种新颖的预测性概念,命名为$ F $ -Information,它是定向的,并包含GNN模型的现实容量。基于它,IFExplainer产生具有最大信息流到预测的解释性子图。同时,在去除解释之后,它最小化了从输入到预测结果的信息流。因此,所产生的解释对于预测并且足以揭示最重要的子结构是重要的。我们评估IFExplainer以解释GNN对乳腺癌亚型的预测。 BRACS数据集的实验结果显示了该方法的卓越性能。
translated by 谷歌翻译
深度学习的显着成功引起了人们对医学成像诊断的应用的兴趣。尽管最新的深度学习模型在分类不同类型的医学数据方面已经达到了人类水平的准确性,但这些模型在临床工作流程中几乎不采用,这主要是由于缺乏解释性。深度学习模型的黑盒子性提出了制定策略来解释这些模型的决策过程的必要性,从而导致了可解释的人工智能(XAI)主题的创建。在这种情况下,我们对应用于医学成像诊断的XAI进行了详尽的调查,包括视觉,基于示例和基于概念的解释方法。此外,这项工作回顾了现有的医学成像数据集和现有的指标,以评估解释的质量。此外,我们还包括一组基于报告生成的方法的性能比较。最后,还讨论了将XAI应用于医学成像以及有关该主题的未来研究指示的主要挑战。
translated by 谷歌翻译
在本文中,我们提供了针对深度学习(DL)模型的结构化文献分析,该模型用于支持癌症生物学的推论,并特别强调了多词分析。这项工作着重于现有模型如何通过先验知识,生物学合理性和解释性,生物医学领域的基本特性来解决更好的对话。我们讨论了DL模型的最新进化拱门沿整合先前的生物关系和网络知识的方向,以支持更好的概括(例如途径或蛋白质 - 蛋白质相互作用网络)和解释性。这代表了向模型的基本功能转变,该模型可以整合机械和统计推断方面。我们讨论了在此类模型中整合域先验知识的代表性方法。该论文还为解释性和解释性的当代方法提供了关键的看法。该分析指向编码先验知识和改善解释性之间的融合方向。
translated by 谷歌翻译
Motion prediction systems aim to capture the future behavior of traffic scenarios enabling autonomous vehicles to perform safe and efficient planning. The evolution of these scenarios is highly uncertain and depends on the interactions of agents with static and dynamic objects in the scene. GNN-based approaches have recently gained attention as they are well suited to naturally model these interactions. However, one of the main challenges that remains unexplored is how to address the complexity and opacity of these models in order to deal with the transparency requirements for autonomous driving systems, which includes aspects such as interpretability and explainability. In this work, we aim to improve the explainability of motion prediction systems by using different approaches. First, we propose a new Explainable Heterogeneous Graph-based Policy (XHGP) model based on an heterograph representation of the traffic scene and lane-graph traversals, which learns interaction behaviors using object-level and type-level attention. This learned attention provides information about the most important agents and interactions in the scene. Second, we explore this same idea with the explanations provided by GNNExplainer. Third, we apply counterfactual reasoning to provide explanations of selected individual scenarios by exploring the sensitivity of the trained model to changes made to the input data, i.e., masking some elements of the scene, modifying trajectories, and adding or removing dynamic agents. The explainability analysis provided in this paper is a first step towards more transparent and reliable motion prediction systems, important from the perspective of the user, developers and regulatory agencies. The code to reproduce this work is publicly available at https://github.com/sancarlim/Explainable-MP/tree/v1.1.
translated by 谷歌翻译