在肺放疗期间,可以记录红外反射物体的位置以估计肿瘤位置。但是,放射治疗系统具有阻碍辐射递送精度的机器人控制限制固有的延迟。通过在线学习复发性神经网络(RNN)的预测允许适应非平稳的呼吸信号,但是诸如RTRL和TRUNCED BPTT之类的经典方法分别缓慢且有偏见。这项研究调查了公正的在线复发优化(UORO)预测呼吸运动的能力,并提高肺放疗的安全性。我们使用了9个观察记录,记录了3D外部标记在胸部和健康个体的腹部的3D位置,从73至222s的间隔内呼吸。采样频率为10Hz,在上部方向上,记录的轨迹的幅度从6mm到40mm不等。我们使用经过UORO训练的RNN同时预测每个标记的3D位置,其地平值在0.1s和2.0之间。我们将其性能与经过RTRL,LMS和离线线性回归训练的RNN进行比较。我们为UORO中涉及梯度损失计算的数量提供了封闭形式的表达式,从而使其实施有效。在每个序列的第一分钟内进行训练和交叉验证。在考虑的地平线值和9个序列上,Uoro平均达到了比较算法之间最低的根平方(RMS)误差和最大误差。这些误差分别等于1.3mm和8.8mm,每时间步长的预测时间低于2.8ms(Dell Intel Core i9-9900K 3.60 GHz)。线性回归的Horizo​​n值为0.1和0.2s的RMS误差最低,其次是0.3s和0.5s之间的LMS,而LMS的LMS误差为0.3s和0.5s,而Uoro的地平线值大于0.6s。
translated by 谷歌翻译
在对肺癌患者的放疗治疗期间,需要最小化肿瘤周围健康组织的辐射,这由于呼吸运动和线性加速器系统的潜伏期很难。在拟议的研究中,我们首先使用Lucas-Kanade锥体光流算法来对四个肺癌患者的胸部计算机断层扫描图像进行可变形的图像登记。然后,我们根据先前计算的变形场跟踪靠近肺部肿瘤的三个内部点,并通过使用实时重复学习(RTRL)和梯度剪辑训练的复发神经网络(RNN)预测其位置。呼吸数据非常规规律,在约2.5Hz时采样,并在脊柱方向上包括人工漂移。轨道点的运动幅度范围为12.0mm至22.7mm。最后,我们提出了一种基于线性对应模型和Nadaraya-Watson非线性回归的最初肿瘤图像的恢复和预测3D肿瘤图像的简单方法。与测试集上RNN预测相对应的根平方误差,最大误差和抖动小于使用线性预测和最小平方(LMS)获得的相同性能度量。特别是,与RNN相关的最大预测误差等于1.51mm,比与线性预测和LMS相关的最大误差低16.1%和5.0%。 RTRL的平均预测时间等于119ms,小于400ms标记位置采样时间。预测图像中的肿瘤位置在视觉上似乎是正确的,这通过等于0.955的原始图像和预测图像之间的高平均互相关证实。
translated by 谷歌翻译
预测基金绩效对投资者和基金经理都是有益的,但这是一项艰巨的任务。在本文中,我们测试了深度学习模型是否比传统统计技术更准确地预测基金绩效。基金绩效通常通过Sharpe比率进行评估,该比例代表了风险调整的绩效,以确保基金之间有意义的可比性。我们根据每月收益率数据序列数据计算了年度夏普比率,该数据的时间序列数据为600多个投资于美国上市大型股票的开放式共同基金投资。我们发现,经过现代贝叶斯优化训练的长期短期记忆(LSTM)和封闭式复发单元(GRUS)深度学习方法比传统统计量相比,预测基金的Sharpe比率更高。结合了LSTM和GRU的预测的合奏方法,可以实现所有模型的最佳性能。有证据表明,深度学习和结合能提供有希望的解决方案,以应对基金绩效预测的挑战。
translated by 谷歌翻译
在称为RNN(p)的几个时间滞后的复发神经网络是自然回归ARX(P)模型的自然概括。当不同的时间尺度会影响给定现象时,它是一种强大的预测工具,因为它发生在能源领域,每小时,每日,每周和每年的互动并存。具有成本效益的BPTT是RNN的学习算法的行业标准。我们证明,当训练RNN(P)模型时,其他学习算法在时间和空间复杂性方面都更加有效。我们还介绍了一种新的学习算法,即树木重组的重组学习,该算法利用了展开网络的树表示,并且似乎更有效。我们提出了RNN(P)模型的应用,以在每小时规模上进行功耗预测:实验结果证明了所提出的算法的效率以及所选模型在点和能源消耗的概率预测中实现的出色预测准确性。
translated by 谷歌翻译
粒子加速器是复杂的设施,可产生大量的结构化数据,并具有明确的优化目标以及精确定义的控制要求。因此,它们自然适合数据驱动的研究方法。来自传感器和监视加速器形式的多元时间序列的数据。在加速器控制和诊断方面,快速的先发制人方法是高度首选的,数据驱动的时间序列预测方法的应用尤其有希望。这篇综述提出了时间序列预测问题,并总结了现有模型,并在各个科学领域的应用中进行了应用。引入了粒子加速器领域中的几次和将来的尝试。预测到粒子加速器的时间序列的应用显示出令人鼓舞的结果和更广泛使用的希望,现有的问题(例如数据一致性和兼容性)已开始解决。
translated by 谷歌翻译
传染病仍然是全世界人类疾病和死亡的主要因素之一,其中许多疾病引起了流行的感染波。特定药物和预防疫苗防止大多数流行病的不可用,这使情况变得更糟。这些迫使公共卫生官员,卫生保健提供者和政策制定者依靠由流行病的可靠预测产生的预警系统。对流行病的准确预测可以帮助利益相关者调整对手的对策,例如疫苗接种运动,人员安排和资源分配,以减少手头的情况,这可以转化为减少疾病影响的影响。不幸的是,大多数过去的流行病(例如,登革热,疟疾,肝炎,流感和最新的Covid-19)表现出非线性和非平稳性特征,这是由于它们基于季节性依赖性变化以及这些流行病的性质的扩散波动而引起的。 。我们使用基于最大的重叠离散小波变换(MODWT)自动回归神经网络分析了各种流行时期时间序列数据集,并将其称为EWNET。 MODWT技术有效地表征了流行时间序列中的非平稳行为和季节性依赖性,并在拟议的集合小波网络框架中改善了自回旋神经网络的预测方案。从非线性时间序列的角度来看,我们探讨了所提出的EWNET模型的渐近平稳性,以显示相关的马尔可夫链的渐近行为。我们还理论上还研究了学习稳定性的效果以及在拟议的EWNET模型中选择隐藏的神经元的选择。从实际的角度来看,我们将我们提出的EWNET框架与以前用于流行病预测的几种统计,机器学习和深度学习模型进行了比较。
translated by 谷歌翻译
准确预测高海洋状态的滚动运动对于海洋车辆的可操作性,安全性和生存能力而言是重要的。本文介绍了一种新型的数据驱动方法,用于实现高海国船舶运动的多步骤预测。提出了一个名为ConvlSTMPNET的混合神经网络,以并行执行长期记忆(LSTM)和一维卷积神经网络(CNN),以从多维输入中提取时间依赖性和时空信息。采用KC作为研究对象,使用计算流体动力学方法的数值解决方案可用于在带有不同波动方向的Sea State 7中生成船舶运动数据。考虑到运动状态和波高度的时间史的影响,对特征空间的选择进行了深入的比较研究。比较结果表明,选择运动状态和波高作为多步预测的特征空间的优越性。此外,结果表明,在滚动运动的多步骤预测中,ConvlstMnet比LSTM和CNN方法更准确,从而验证了所提出的方法的效率。
translated by 谷歌翻译
我们在在线环境中研究了非线性预测,并引入了混合模型,该模型通过端到端体系结构有效地减轻了对手工设计的功能的需求和传统非线性预测/回归方法的手动模型选择问题。特别是,我们使用递归结构从顺序信号中提取特征,同时保留状态信息,即历史记录和增强决策树以产生最终输出。该连接是以端到端方式的,我们使用随机梯度下降共同优化整个体系结构,我们还为此提供了向后的通过更新方程。特别是,我们采用了一个经常性的神经网络(LSTM)来从顺序数据中提取自适应特征,并提取梯度增强机械(Soft GBDT),以进行有效的监督回归。我们的框架是通用的,因此可以使用其他深度学习体系结构进行特征提取(例如RNN和GRU)和机器学习算法进行决策,只要它们是可区分的。我们证明了算法对合成数据的学习行为以及各种现实生活数据集对常规方法的显着性能改进。此外,我们公开分享提出的方法的源代码,以促进进一步的研究。
translated by 谷歌翻译
地震的预测和预测有很长的时间,在某些情况下有肮脏的历史,但是最近的工作重新点燃了基于预警的进步,诱发地震性的危害评估以及对实验室地震的成功预测。在实验室中,摩擦滑移事件为地震和地震周期提供了类似物。 Labquakes是机器学习(ML)的理想目标,因为它们可以在受控条件下以长序列生产。最近的作品表明,ML可以使用断层区的声学排放来预测实验室的几个方面。在这里,我们概括了这些结果,并探索了Labquake预测和自动回归(AR)预测的深度学习(DL)方法。 DL改善了现有的Labquake预测方法。 AR方法允许通过迭代预测在未来的视野中进行预测。我们证明,基于长期任期内存(LSTM)和卷积神经网络的DL模型可以预测在几种条件下实验室,并且可以以忠诚度预测断层区应力,证实声能是断层区应力的指纹。我们还预测了实验室的失败开始(TTSF)和失败结束(TTEF)的时间。有趣的是,在所有地震循环中都可以成功预测TTEF,而TTSF的预测随preseismisic断层蠕变的数量而变化。我们报告了使用三个序列建模框架:LSTM,时间卷积网络和变压器网络预测故障应力演变的AR方法。 AR预测与现有的预测模型不同,该模型仅在特定时间预测目标变量。超出单个地震周期的预测结果有限,但令人鼓舞。我们的ML/DL模型优于最先进的模型,我们的自回归模型代表了一个新颖的框架,可以增强当前的地震预测方法。
translated by 谷歌翻译
基于预测方法的深度学习已成为时间序列预测或预测的许多应用中的首选方法,通常通常优于其他方法。因此,在过去的几年中,这些方法现在在大规模的工业预测应用中无处不在,并且一直在预测竞赛(例如M4和M5)中排名最佳。这种实践上的成功进一步提高了学术兴趣,以理解和改善深厚的预测方法。在本文中,我们提供了该领域的介绍和概述:我们为深入预测的重要构建块提出了一定深度的深入预测;随后,我们使用这些构建块,调查了最近的深度预测文献的广度。
translated by 谷歌翻译
储层计算机(RCS)是所有神经网络训练最快的计算机之一,尤其是当它们与其他经常性神经网络进行比较时。 RC具有此优势,同时仍能很好地处理顺序数据。但是,由于该模型对其超参数(HPS)的敏感性,RC的采用率滞后于其他神经网络模型。文献中缺少一个自动调谐这些参数的现代统一软件包。手动调整这些数字非常困难,传统网格搜索方法的成本呈指数增长,随着所考虑的HP数量,劝阻RC的使用并限制了可以设计的RC模型的复杂性。我们通过引入RCTORCH来解决这些问题,Rctorch是一种基于Pytorch的RC神经网络软件包,具有自动HP调整。在本文中,我们通过使用它来预测不同力的驱动摆的复杂动力学来证明rctorch的实用性。这项工作包括编码示例。示例Python Jupyter笔记本可以在我们的GitHub存储库https://github.com/blindedjoy/rctorch上找到,可以在https://rctorch.readthedocs.io/上找到文档。
translated by 谷歌翻译
Platelet products are both expensive and have very short shelf lives. As usage rates for platelets are highly variable, the effective management of platelet demand and supply is very important yet challenging. The primary goal of this paper is to present an efficient forecasting model for platelet demand at Canadian Blood Services (CBS). To accomplish this goal, four different demand forecasting methods, ARIMA (Auto Regressive Moving Average), Prophet, lasso regression (least absolute shrinkage and selection operator) and LSTM (Long Short-Term Memory) networks are utilized and evaluated. We use a large clinical dataset for a centralized blood distribution centre for four hospitals in Hamilton, Ontario, spanning from 2010 to 2018 and consisting of daily platelet transfusions along with information such as the product specifications, the recipients' characteristics, and the recipients' laboratory test results. This study is the first to utilize different methods from statistical time series models to data-driven regression and a machine learning technique for platelet transfusion using clinical predictors and with different amounts of data. We find that the multivariate approaches have the highest accuracy in general, however, if sufficient data are available, a simpler time series approach such as ARIMA appears to be sufficient. We also comment on the approach to choose clinical indicators (inputs) for the multivariate models.
translated by 谷歌翻译
海洋是令人印象深刻的复杂数据混合的来源,可用于发现尚未发现的关系。此类数据来自海洋及其表面,例如用于跟踪血管轨迹的自动识别系统(AIS)消息。 AIS消息以理想的定期时间间隔通过无线电或卫星传输,但随着时间的流逝而变化不规则。因此,本文旨在通过神经网络对AIS消息传输行为进行建模,以预测即将到来的AIS消息的内容,尤其是在同时方法的情况下,尽管消息的时间不规则性作为异常值。我们提出了一组实验,其中包含用于预测任务的多种算法,其长度不同。深度学习模型(例如,神经网络)表明自己可以充分地保留血管的空间意识,而不管时间不规则。我们展示了如何通过共同努力来改善此类任务的卷积层,进料网络和反复的神经网络。尝试短,中和大型消息序列,我们的模型达到了相对百分比差异的36/37/38% - 越低,越好,而我们在Elman的RNN上观察到92/45/96%,51 /52/40%的GRU,LSTM的129/98/61%。这些结果支持我们的模型作为驱动器,以改善在时间噪声数据下同时分析多个分歧类型的血管时,可以改善船舶路线的预测。
translated by 谷歌翻译
在部分可观察域中的预测和规划的常见方法是使用经常性的神经网络(RNN),其理想地开发和维持关于隐藏,任务相关因素的潜伏。我们假设物理世界中的许多这些隐藏因素随着时间的推移是恒定的,而只是稀疏变化。为研究这一假设,我们提出了Gated $ L_0 $正规化的动态(Gatel0rd),一种新的经常性架构,它包含归纳偏差,以保持稳定,疏口改变潜伏状态。通过新颖的内部门控功能和潜在状态变化的$ l_0 $ norm的惩罚来实现偏差。我们证明Gatel0rd可以在各种部分可观察到的预测和控制任务中与最先进的RNN竞争或优于最先进的RNN。 Gatel0rd倾向于编码环境的基础生成因子,忽略了虚假的时间依赖性,并概括了更好的,提高了基于模型的规划和加强学习任务中的采样效率和整体性能。此外,我们表明可以容易地解释开发的潜在状态,这是朝着RNN中更好地解释的步骤。
translated by 谷歌翻译
Time series anomaly detection has applications in a wide range of research fields and applications, including manufacturing and healthcare. The presence of anomalies can indicate novel or unexpected events, such as production faults, system defects, or heart fluttering, and is therefore of particular interest. The large size and complex patterns of time series have led researchers to develop specialised deep learning models for detecting anomalous patterns. This survey focuses on providing structured and comprehensive state-of-the-art time series anomaly detection models through the use of deep learning. It providing a taxonomy based on the factors that divide anomaly detection models into different categories. Aside from describing the basic anomaly detection technique for each category, the advantages and limitations are also discussed. Furthermore, this study includes examples of deep anomaly detection in time series across various application domains in recent years. It finally summarises open issues in research and challenges faced while adopting deep anomaly detection models.
translated by 谷歌翻译
大坝破洪水中波传播的计算预测是流体动力和水文学中的长期问题。到目前为止,基于圣人方程的常规数值模型是主要方法。在这里,我们表明,以最少的数据训练的机器学习模型可以帮助预测一维大坝破洪水的长期动态行为,其精度令人满意。为此,我们使用lax-wendroff数值方案为一维大坝洪水方案求解了圣人方程,并通过模拟结果训练储层计算机网络(RC-ESN),由模拟结果组成时间序列深度。我们展示了RC-ESN模型的良好预测能力,该模型预测波传播行为286在大坝破洪水中,均方根误差(RMSE)小于0.01,表现优于传统的长期短期内存(LSTM)模型仅达到仅81个时步的可比RMSE。为了显示RC-ESN模型的性能,我们还提供了有关关键参数(包括训练集大小,储层大小和光谱半径)的预测准确性的灵敏度分析。结果表明,RC-ESN较少依赖训练集尺寸,介质储层尺寸k = 1200〜2600就足够了。我们确认光谱半径\ r {ho}对预测准确性显示了复杂的影响,并建议当前较小的光谱半径\ r {ho}。通过更改大坝断裂的初始流程深度,我们还得出了一个结论,即RC-ESN的预测范围大于LSTM的预测范围。
translated by 谷歌翻译
A well-performing prediction model is vital for a recommendation system suggesting actions for energy-efficient consumer behavior. However, reliable and accurate predictions depend on informative features and a suitable model design to perform well and robustly across different households and appliances. Moreover, customers' unjustifiably high expectations of accurate predictions may discourage them from using the system in the long term. In this paper, we design a three-step forecasting framework to assess predictability, engineering features, and deep learning architectures to forecast 24 hourly load values. First, our predictability analysis provides a tool for expectation management to cushion customers' anticipations. Second, we design several new weather-, time- and appliance-related parameters for the modeling procedure and test their contribution to the model's prediction performance. Third, we examine six deep learning techniques and compare them to tree- and support vector regression benchmarks. We develop a robust and accurate model for the appliance-level load prediction based on four datasets from four different regions (US, UK, Austria, and Canada) with an equal set of appliances. The empirical results show that cyclical encoding of time features and weather indicators alongside a long-short term memory (LSTM) model offer the optimal performance.
translated by 谷歌翻译
Wind power forecasting helps with the planning for the power systems by contributing to having a higher level of certainty in decision-making. Due to the randomness inherent to meteorological events (e.g., wind speeds), making highly accurate long-term predictions for wind power can be extremely difficult. One approach to remedy this challenge is to utilize weather information from multiple points across a geographical grid to obtain a holistic view of the wind patterns, along with temporal information from the previous power outputs of the wind farms. Our proposed CNN-RNN architecture combines convolutional neural networks (CNNs) and recurrent neural networks (RNNs) to extract spatial and temporal information from multi-dimensional input data to make day-ahead predictions. In this regard, our method incorporates an ultra-wide learning view, combining data from multiple numerical weather prediction models, wind farms, and geographical locations. Additionally, we experiment with global forecasting approaches to understand the impact of training the same model over the datasets obtained from multiple different wind farms, and we employ a method where spatial information extracted from convolutional layers is passed to a tree ensemble (e.g., Light Gradient Boosting Machine (LGBM)) instead of fully connected layers. The results show that our proposed CNN-RNN architecture outperforms other models such as LGBM, Extra Tree regressor and linear regression when trained globally, but fails to replicate such performance when trained individually on each farm. We also observe that passing the spatial information from CNN to LGBM improves its performance, providing further evidence of CNN's spatial feature extraction capabilities.
translated by 谷歌翻译
最近,已经努力将信号阶段和时机(SPAT)消息标准化。这些消息包含所有信号交叉方法的信号相时机。因此,这些信息可用于有效的运动计划,从而导致更多均匀的交通流量和均匀的速度轮廓。尽管努力为半活化的信号控制系统提供了可靠的预测,但预测完全驱动控制的信号相时仍具有挑战性。本文提出了使用聚合的流量信号和循环检测器数据的时间序列预测框架。我们利用最先进的机器学习模型来预测未来信号阶段的持续时间。线性回归(LR),随机森林(RF)和长期内存(LSTM)神经网络的性能是针对天真基线模型进行评估的。结果基于瑞士苏黎世的全面信号控制系统的经验数据集表明,机器学习模型的表现优于常规预测方法。此外,基于树木的决策模型(例如RF)的表现最佳,其准确性满足实用应用要求。
translated by 谷歌翻译
通过人类活动(例如在线购买,健康记录,空间流动性等)生成的大量数据可以在连续时间内表示为一系列事件。在这些连续的时间事件序列上学习深度学习模型是一项非平凡的任务,因为它涉及建模不断增加的事件时间戳,活动间时间差距,事件类型以及不同序列内部和跨不同序列之间的不同事件之间的影响。近年来,对标记的时间点过程(MTPP)的神经增强功能已成为一种强大的框架,以模拟连续时间内定位的异步事件的基本生成机制。但是,MTPP框架中的大多数现有模型和推理方法仅考虑完整的观察方案,即所建模的事件序列是完全观察到的,没有丢失的事件 - 理想的设置很少适用于现实世界应用程序。最近考虑的事件的最新工作是在培训MTPP时采用监督的学习技术,这些技术需要以序列的方式了解每个事件的丢失或观察标签,这进一步限制了其实用性,因为在几种情况下,缺失事件的细节是不知道的apriori 。在这项工作中,我们提供了一种新颖的无监督模型和推理方法,用于在存在事件序列的情况下学习MTPP。具体而言,我们首先使用两个MTPP模拟观察到的事件和缺失事件的生成过程,其中缺少事件表示为潜在的随机变量。然后,我们设计了一种无监督的训练方法,该方法通过变异推断共同学习MTPP。这样的公式可以有效地将丢失的数据归为观察到的事件,并可以在序列中确定缺失事件的最佳位置。
translated by 谷歌翻译