训练单次学习模型的核心挑战是数据空间可用镜头的有限代表性。特别是在网络神经科学领域,大脑被表示为图,这种模型在对大脑状态进行分类时可能会导致低性能(例如,典型与自闭症)。为了应对这一点,大多数现有作品都涉及数据增强步骤,以增加培训集的规模,其多样性和代表性。尽管有效,但这种增强方法仅限于生成与输入镜头相同的样品(例如,从单个射击矩阵中产生大脑连接矩阵)。据我们所知,从单个脑图中产生大脑多编码捕获多种类型的连通性的问题仍然无法解决。在本文中,我们空前提出了一个混合图神经网络(GNN)架构,即多编码发电机网络或短暂的多gnemphnet,包括两个子网络:(1)将大脑多机的输入人群集成到单个gnn中模板图,即连接脑神庙(CBT)和(2)一个反向一对多的U-NET网络,该网络在每个训练步骤中都采用了学习的CBT并输出重建后的输入多数法文人群。两个网络都使用循环损失以端到端的方式训练。实验结果表明,与每个班级的单个CBT训练相比,对在增强大脑多数式的训练进行训练时,我们的多gnetet会提高独立分类器的性能。我们希望我们的框架能够阐明单个图的未来对多编码增强的研究。我们的Multigraphgnet源代码可在https://github.com/basiralab/multigraphgnet上获得。
translated by 谷歌翻译
The challenges of collecting medical data on neurological disorder diagnosis problems paved the way for learning methods with scarce number of samples. Due to this reason, one-shot learning still remains one of the most challenging and trending concepts of deep learning as it proposes to simulate the human-like learning approach in classification problems. Previous studies have focused on generating more accurate fingerprints of the population using graph neural networks (GNNs) with connectomic brain graph data. Thereby, generated population fingerprints named connectional brain template (CBTs) enabled detecting discriminative bio-markers of the population on classification tasks. However, the reverse problem of data augmentation from single graph data representing brain connectivity has never been tackled before. In this paper, we propose an augmentation pipeline in order to provide improved metrics on our binary classification problem. Divergently from the previous studies, we examine augmentation from a single population template by utilizing graph-based generative adversarial network (gGAN) architecture for a classification problem. We benchmarked our proposed solution on AD/LMCI dataset consisting of brain connectomes with Alzheimer's Disease (AD) and Late Mild Cognitive Impairment (LMCI). In order to evaluate our model's generalizability, we used cross-validation strategy and randomly sampled the folds multiple times. Our results on classification not only provided better accuracy when augmented data generated from one sample is introduced, but yields more balanced results on other metrics as well.
translated by 谷歌翻译
无创医学神经影像学已经对大脑连通性产生了许多发现。开发了几种实质技术绘制形态,结构和功能性脑连接性,以创建人脑中神经元活动的全面路线图。依靠其非欧国人数据类型,图形神经网络(GNN)提供了一种学习深图结构的巧妙方法,并且它正在迅速成为最先进的方法,从而导致各种网络神经科学任务的性能增强。在这里,我们回顾了当前基于GNN的方法,突出了它们在与脑图有关的几种应用中使用的方式,例如缺失的脑图合成和疾病分类。最后,我们通过绘制了通往网络神经科学领域中更好地应用GNN模型在神经系统障碍诊断和人群图整合中的路径。我们工作中引用的论文列表可在https://github.com/basiralab/gnns-inns-intwork-neuroscience上找到。
translated by 谷歌翻译
大脑网络将大脑区域之间的复杂连接性描述为图形结构,这为研究脑连接素提供了强大的手段。近年来,图形神经网络已成为使用结构化数据的普遍学习范式。但是,由于数据获取的成本相对较高,大多数大脑网络数据集的样本量受到限制,这阻碍了足够的培训中的深度学习模型。受元学习的启发,该论文以有限的培训示例快速学习新概念,研究了在跨数据库中分析脑连接组的数据有效培训策略。具体而言,我们建议在大型样本大小的数据集上进行元训练模型,并将知识转移到小数据集中。此外,我们还探索了两种面向脑网络的设计,包括Atlas转换和自适应任务重新启动。与其他训练前策略相比,我们的基于元学习的方法实现了更高和稳定的性能,这证明了我们提出的解决方案的有效性。该框架还能够以数据驱动的方式获得有关数据集和疾病之间相似之处的新见解。
translated by 谷歌翻译
在这项工作中,我们使用功能磁共振成像(fMRI)专注于具有挑战性的任务,神经疾病分类。在基于人群的疾病分析中,图卷积神经网络(GCN)取得了显着的成功。但是,这些成就与丰富的标记数据密不可分,对虚假信号敏感。为了改善在标签有效的设置下的fMRI表示学习和分类,我们建议在GCN上使用新颖的,理论驱动的自我监督学习(SSL)框架,即在FMRI分析门上用于时间自我监督学习的CCA。具体而言,要求设计合适有效的SSL策略来提取fMRI的形成和鲁棒特征。为此,我们研究了FMRI动态功能连接(FC)的几种新的图表增强策略,用于SSL培训。此外,我们利用规范相关分析(CCA)在不同的时间嵌入中,并呈现理论含义。因此,这产生了一个新颖的两步GCN学习程序,该过程包括在未标记的fMRI人群图上的(i)SSL组成,并且(ii)在小标记的fMRI数据集上进行了微调,以进行分类任务。我们的方法在两个独立的fMRI数据集上进行了测试,这表明自闭症和痴呆症诊断方面表现出色。
translated by 谷歌翻译
Common measures of brain functional connectivity (FC) including covariance and correlation matrices are semi-positive definite (SPD) matrices residing on a cone-shape Riemannian manifold. Despite its remarkable success for Euclidean-valued data generation, use of standard generative adversarial networks (GANs) to generate manifold-valued FC data neglects its inherent SPD structure and hence the inter-relatedness of edges in real FC. We propose a novel graph-regularized manifold-aware conditional Wasserstein GAN (GR-SPD-GAN) for FC data generation on the SPD manifold that can preserve the global FC structure. Specifically, we optimize a generalized Wasserstein distance between the real and generated SPD data under an adversarial training, conditioned on the class labels. The resulting generator can synthesize new SPD-valued FC matrices associated with different classes of brain networks, e.g., brain disorder or healthy control. Furthermore, we introduce additional population graph-based regularization terms on both the SPD manifold and its tangent space to encourage the generator to respect the inter-subject similarity of FC patterns in the real data. This also helps in avoiding mode collapse and produces more stable GAN training. Evaluated on resting-state functional magnetic resonance imaging (fMRI) data of major depressive disorder (MDD), qualitative and quantitative results show that the proposed GR-SPD-GAN clearly outperforms several state-of-the-art GANs in generating more realistic fMRI-based FC samples. When applied to FC data augmentation for MDD identification, classification models trained on augmented data generated by our approach achieved the largest margin of improvement in classification accuracy among the competing GANs over baselines without data augmentation.
translated by 谷歌翻译
Neuroomaging的最新进展以及网络数据统计学习中的算法创新提供了一种独特的途径,可以集成大脑结构和功能,从而有助于揭示系统水平的一些大脑组织原则。在此方向上,我们通过曲线图编码器 - 解码器系统制定了一种模拟脑结构连接(SC)和功能连接(FC)之间的关系的监督图形表示学习框架,其中SC用作预测经验FC的输入。训练图卷积编码器捕获模拟实际神经通信的大脑区域之间的直接和间接相互作用,以及集成结构网络拓扑和节点(即,区域特定的)属性的信息。编码器学习节点级SC嵌入,它们组合以生成用于重建经验FC网络的(全大脑)图级表示。所提出的端到端模型利用多目标损失函数来共同重建FC网络,并学习用于下游主题的SC-To-Fc映射的判别图表表示(即,图形级)分类。综合实验表明,所述关系的学习表现从受试者的脑网络的内在属性中捕获有价值的信息,并导致提高对来自人类连接项目的大量重型饮酒者和非饮酒者的准确性提高。我们的工作提供了关于脑网络之间关系的新见解,支持使用图形表示学习的有希望的前景,了解有关人脑活动和功能的更多信息。
translated by 谷歌翻译
最近,大脑网络已被广泛采用来研究脑动力学,脑发育和脑部疾病。大脑功能网络上的图表学习技术可以促进发现用于临床表型和神经退行性疾病的新型生物标志物。但是,当前的图形学习技术在大脑网络挖掘上存在几个问题。首先,大多数当前的图形学习模型都是为无符号图设计的,这阻碍了对许多签名网络数据(例如大脑功能网络)的分析。同时,大脑网络数据的不足限制了临床表型预测的模型性能。此外,当前的图形学习模型很少是可以解释的,这可能无法为模型结果提供生物学见解。在这里,我们提出了一个可解释的层次签名的图形表示模型,以从大脑功能网络中提取图形表示,可用于不同的预测任务。为了进一步提高模型性能,我们还提出了一种新策略,以增强功能性脑网络数据以进行对比学习。我们使用HCP和OASIS的数据评估了有关不同分类和回归任务的框架。我们来自广泛的实验的结果表明,与几种最新技术相比,该模型的优越性。此外,我们使用从这些预测任务得出的图形显着性图来证明表型生物标志物的检测和解释。
translated by 谷歌翻译
图表卷积神经网络(GCNS)广泛用于图形分析。具体地,在医学应用中,GCNS可用于群体图中的疾病预测,其中曲线图节点代表个体,边缘代表个体相似度。然而,GCNS依赖于大量数据,这是对单一医学机构收集的具有挑战性。此外,大多数医疗机构继续面临的危急挑战是用不完全的数据信息分离地解决疾病预测。为了解决这些问题,联合学习(FL)允许隔离本地机构协作,没有数据共享的全局模型。在这项工作中,我们提出了一个框架FEDNI,通过FL释放网络染色和机构间数据。具体地,我们首先使用图形生成的对冲网络(GaN)联接捕获缺少节点和边缘预测器来完成本地网络的缺失信息。然后我们使用联合图形学习平台跨过机构训练全局GCN节点分类器。新颖的设计使我们能够通过利用联合学习和图表学习方法来构建更准确的机器学习模型。我们证明,我们的联邦模式优于本地和基线流动方法,在两个公共神经影像数据集中具有显着的边缘。
translated by 谷歌翻译
图形神经网络(GNNS)在包括田野医学成像和网络神经科学在内的各个领域都取得了非凡的增强,在诊断自闭症等挑战性神经系统疾病方面,它们表现出很高的准确性。面对医学数据稀缺性和高度私人性,培训此类渴望数据的模型仍然具有挑战性。联合学习通过允许在多个数据集上培训模型,以完全保存数据的方式来独立收集,从而为该问题提供了有效的解决方案。尽管最先进的GNN和联合学习技术都侧重于提高分类准确性,但它们忽略了一个关键的未解决问题:研究GNN模型中最歧视性生物标志物(即功能)的可重复性(即功能),在联合学习范式中选择。量化预测医学模型的可重复性,以防止培训和测试数据分布的扰动,这是克服转化临床应用时要克服的最大障碍之一。据我们所知,这介绍了第一批研究联合GNN模型的可重复性,并应用了对医学成像和大脑连接数据集进行分类的应用。我们使用对医学成像和连接数据集训练的各种GNN模型评估了我们的框架。更重要的是,我们表明联邦学习可以提高GNN模型在此类医学学习任务中的准确性和可重复性。我们的源代码可在https://github.com/basiralab/reproduciblefedgnn上获得。
translated by 谷歌翻译
功能连接(FC)研究已经证明了通过FMRI相关矩阵的无向加权图来研究脑及其疾病的总体价值。然而,与FC的大多数工作都取决于连接的方式,还取决于FC矩阵的手册后HOC分析。在这项工作中,我们提出了一个深入的学习架构Braingnn,它可以学习连接结构,作为学习对象的一部分。它同时将图形神经网络应用于此学习图,并学习选择对预测任务重要的大脑区域的稀疏子集。我们展示了在精神分裂症FMRI数据集中的模型的最先进的分类性能,并证明了内省如何导致紊乱的相关结果。模型学到的图表表现出强烈的阶级歧视,相关地区的稀疏子集与精神分裂症文献一致。
translated by 谷歌翻译
Mapping the connectome of the human brain using structural or functional connectivity has become one of the most pervasive paradigms for neuroimaging analysis. Recently, Graph Neural Networks (GNNs) motivated from geometric deep learning have attracted broad interest due to their established power for modeling complex networked data. Despite their superior performance in many fields, there has not yet been a systematic study of how to design effective GNNs for brain network analysis. To bridge this gap, we present BrainGB, a benchmark for brain network analysis with GNNs. BrainGB standardizes the process by (1) summarizing brain network construction pipelines for both functional and structural neuroimaging modalities and (2) modularizing the implementation of GNN designs. We conduct extensive experiments on datasets across cohorts and modalities and recommend a set of general recipes for effective GNN designs on brain networks. To support open and reproducible research on GNN-based brain network analysis, we host the BrainGB website at https://braingb.us with models, tutorials, examples, as well as an out-of-box Python package. We hope that this work will provide useful empirical evidence and offer insights for future research in this novel and promising direction.
translated by 谷歌翻译
Graph neural networks (GNNs) have been successfully applied to early mild cognitive impairment (EMCI) detection, with the usage of elaborately designed features constructed from blood oxygen level-dependent (BOLD) time series. However, few works explored the feasibility of using BOLD signals directly as features. Meanwhile, existing GNN-based methods primarily rely on hand-crafted explicit brain topology as the adjacency matrix, which is not optimal and ignores the implicit topological organization of the brain. In this paper, we propose a spatial temporal graph convolutional network with a novel graph structure self-learning mechanism for EMCI detection. The proposed spatial temporal graph convolution block directly exploits BOLD time series as input features, which provides an interesting view for rsfMRI-based preclinical AD diagnosis. Moreover, our model can adaptively learn the optimal topological structure and refine edge weights with the graph structure self-learning mechanism. Results on the Alzheimer's Disease Neuroimaging Initiative (ADNI) database show that our method outperforms state-of-the-art approaches. Biomarkers consistent with previous studies can be extracted from the model, proving the reliable interpretability of our method.
translated by 谷歌翻译
在这里,我们提出了一种用于多模式神经影像融合学习(HGM)的异质图形神经网络。传统的基于GNN的模型通常假设大脑网络是具有单一类型节点和边缘的均匀图形。然而,巨大的文献已经显示出人脑的异质性,特别是在两个半球之间。均匀脑网络不足以模拟复杂的脑状态。因此,在这项工作中,我们首先用多型节点(即左右半球节点)和多型边缘(即半球形边缘)来模拟大脑网络作为异质图。此外,我们还提出了一种基于Hetergoneou Brain网络的自我监督的预训练策略,以解决由于复杂的模型和小样本大小而过度的问题。我们在两个数据集合的结果显示出拟议模型的优越性,以疾病预测任务的其他多模型方法。此外,消融实验表明,我们具有预训练策略的模型可以减轻训练样本大小有限的问题。
translated by 谷歌翻译
图理论分析已成为建模大脑功能和解剖连接性的标准工具。随着连接组学的出现,主要的图形或感兴趣的网络是结构连接组(源自DTI拖拉术)和功能连接组(源自静止状态fMRI)。但是,大多数已发表的连接组研究都集中在结构或功能连接上,但是在同一数据集中可用的情况下,它们之间的互补信息可以共同利用以提高我们对大脑的理解。为此,我们提出了一个功能约束的结构图变量自动编码器(FCS-GVAE),能够以无监督的方式合并功能和结构连接的信息。这导致了一个关节的低维嵌入,该嵌入建立了一个统一的空间坐标系,用于在不同受试者之间进行比较。我们使用公开可用的OASIS-3阿尔茨海默氏病(AD)数据集评估我们的方法,并表明为最佳编码功能性脑动力学而言,有必要的配方是必要的。此外,所提出的联合嵌入方法比不使用互补连接信息的方法更准确地区分不同的患者子选集。
translated by 谷歌翻译
近年来,来自神经影像数据的脑疾病的单一受试者预测引起了人们的关注。然而,对于某些异质性疾病,例如严重抑郁症(MDD)和自闭症谱系障碍(ASD),大规模多站点数据集对预测模型的性能仍然很差。我们提出了一个两阶段的框架,以改善静止状态功能磁共振成像(RS-FMRI)的异质精神疾病的诊断。首先,我们建议对健康个体的数据进行自我监督的掩盖预测任务,以利用临床数据集中健康对照与患者之间的差异。接下来,我们在学习的判别性表示方面培训了一个有监督的分类器。为了建模RS-FMRI数据,我们开发Graph-S4;最近提出的状态空间模型S4扩展到图形设置,其中底层图结构未提前知道。我们表明,将框架和Graph-S4结合起来可以显着提高基于神经成像的MDD和ASD的基于神经影像学的单个主题预测模型和三个开源多中心RS-FMRI临床数据集的诊断性能。
translated by 谷歌翻译
人的大脑位于复杂的神经生物学系统的核心,神经元,电路和子系统以神秘的方式相互作用。长期以来,了解大脑的结构和功能机制一直是神经科学研究和临床障碍疗法的引人入胜的追求。将人脑作为网络的连接映射是神经科学中最普遍的范例之一。图神经网络(GNN)最近已成为建模复杂网络数据的潜在方法。另一方面,深层模型的可解释性低,从而阻止了他们在医疗保健等决策环境中的使用。为了弥合这一差距,我们提出了一个可解释的框架,以分析特定的利益区域(ROI)和突出的联系。提出的框架由两个模块组成:疾病预测的面向脑网络的主链模型和全球共享的解释发生器,该模型突出了包括疾病特异性的生物标志物,包括显着的ROI和重要连接。我们在三个现实世界中的脑疾病数据集上进行实验。结果证明了我们的框架可以获得出色的性能并确定有意义的生物标志物。这项工作的所有代码均可在https://github.com/hennyjie/ibgnn.git上获得。
translated by 谷歌翻译
Late-life depression (LLD) is a highly prevalent mood disorder occurring in older adults and is frequently accompanied by cognitive impairment (CI). Studies have shown that LLD may increase the risk of Alzheimer's disease (AD). However, the heterogeneity of presentation of geriatric depression suggests that multiple biological mechanisms may underlie it. Current biological research on LLD progression incorporates machine learning that combines neuroimaging data with clinical observations. There are few studies on incident cognitive diagnostic outcomes in LLD based on structural MRI (sMRI). In this paper, we describe the development of a hybrid representation learning (HRL) framework for predicting cognitive diagnosis over 5 years based on T1-weighted sMRI data. Specifically, we first extract prediction-oriented MRI features via a deep neural network, and then integrate them with handcrafted MRI features via a Transformer encoder for cognitive diagnosis prediction. Two tasks are investigated in this work, including (1) identifying cognitively normal subjects with LLD and never-depressed older healthy subjects, and (2) identifying LLD subjects who developed CI (or even AD) and those who stayed cognitively normal over five years. To the best of our knowledge, this is among the first attempts to study the complex heterogeneous progression of LLD based on task-oriented and handcrafted MRI features. We validate the proposed HRL on 294 subjects with T1-weighted MRIs from two clinically harmonized studies. Experimental results suggest that the HRL outperforms several classical machine learning and state-of-the-art deep learning methods in LLD identification and prediction tasks.
translated by 谷歌翻译
在神经影像分析中,功能磁共振成像(fMRI)可以很好地评估没有明显结构病变的脑疾病的大脑功能变化。到目前为止,大多数基于研究的FMRI研究将功能连接性作为疾病分类的基本特征。但是,功能连接通常是根据感兴趣的预定义区域的时间序列计算的,并忽略了每个体素中包含的详细信息,这可能会导致诊断模型的性能恶化。另一个方法论上的缺点是训练深模型的样本量有限。在这项研究中,我们提出了Brainformer,这是一种用于单个FMRI体积的脑疾病分类的一般混合变压器架构,以充分利用素食细节,并具有足够的数据尺寸和尺寸。脑形形式是通过对每个体素内的局部提示进行建模的3D卷积,并捕获两个全球注意力障碍的遥远地区之间的全球关系。局部和全局线索通过单流模型在脑形中汇总。为了处理多站点数据,我们提出了一个归一化层,以将数据标准化为相同的分布。最后,利用一种基于梯度的定位图可视化方法来定位可能的疾病相关生物标志物。我们在五个独立获取的数据集上评估了脑形形成器,包括Abide,ADNI,MPILMBB,ADHD-200和ECHO,以及自闭症疾病,阿尔茨海默氏病,抑郁症,注意力缺陷多动障碍和头痛疾病。结果证明了脑形对多种脑疾病的诊断的有效性和普遍性。脑形物可以在临床实践中促进基于神经成像的精确诊断,并激励FMRI分析中的未来研究。代码可在以下网址获得:https://github.com/ziyaozhangforpcl/brainformer。
translated by 谷歌翻译
脑图表示学习是脑部疾病诊断的基本技术。近年来,学术和工业社区的巨大努力都致力于大脑图表的学习。最近引入的同构神经网络(ISONN)可以自动学习大脑图中的子图模式的存在,这也是迄今为止这种情况下的最新脑形图表学习方法。但是,Isonn未能捕获子图模式的方向,这可能使学习的表示形式在许多情况下都是无用的。在本文中,我们通过引入图形同构胶囊以进行有效的脑图表示学习,提出了一种新的ISO-CAPSNET(同构胶囊NET)模型。基于胶囊动态路由,除了子图模式存在置信度得分外,ISO-CAPSNET还可以学习其他富含子图的属性,包括位置,大小和方向,用于计算类别的数字胶囊。我们已经将ISO-CAPSNET与经典和最先进的脑图表示方法与四个Brain Graph基准数据集的广泛实验进行了比较。实验结果还证明了ISO-CAPSNET的有效性,这可以超过基线方法,具有显着改进。
translated by 谷歌翻译