许多应用程序需要高准确性的神经网络以及低延迟和用户数据隐私保证。面对反欺骗就是这样的任务之一。但是,单个模型可能无法为不同的设备性能类别提供最佳结果,而培训多个模型耗时。在这项工作中,我们提出了训练后自适应(PTA)块。这样的块在结构上很简单,并为MobilenEtv2倒残余块提供了替换。 PTA块具有多个分支,具有不同的计算成本。可以按需和运行时选择要执行的分支;因此,为多个设备层提供不同的推理时间和配置能力。至关重要的是,该模型经过一次训练,并且可以在训练后,甚至直接在移动设备上进行重新配置。此外,与在Celeba-Spoof数据集中测试的原始MobileNetV2相比,提出的方法显示出相比要大得多的总体性能。在训练时对不同的PTA块配置进行采样,这也减少了训练模型所需的总体壁锁时间。虽然我们提出了针对反欺骗问题的计算结果,但具有PTA块的MobileNETV2适用于卷积神经网络可解决的任何问题,这使得结果实际上显着。
translated by 谷歌翻译
神经网络需要大量的注释数据才能学习。元学习算法提出了一种将训练样本数量减少到少数的方法。最突出的基于优化的元学习算法之一是模型敏捷的元学习(MAML)。但是,适应MAML新任务的关键过程非常慢。在这项工作中,我们提出了对MAML元学习算法的改进。我们介绍了lambda模式,通过这些模式,我们限制了在适应阶段在网络中更新的重量。这使得可以跳过某些梯度计算。选择最快的图案给定允许的质量降解阈值参数。在某些情况下,通过仔细的模式选择可以提高质量。进行的实验表明,通过Lambda适应模式选择,可以在以下区域显着改善MAML方法:适应时间已减少3倍,而精度损失最小;一步适应的准确性已大大提高。
translated by 谷歌翻译
The increased importance of mobile photography created a need for fast and performant RAW image processing pipelines capable of producing good visual results in spite of the mobile camera sensor limitations. While deep learning-based approaches can efficiently solve this problem, their computational requirements usually remain too large for high-resolution on-device image processing. To address this limitation, we propose a novel PyNET-V2 Mobile CNN architecture designed specifically for edge devices, being able to process RAW 12MP photos directly on mobile phones under 1.5 second and producing high perceptual photo quality. To train and to evaluate the performance of the proposed solution, we use the real-world Fujifilm UltraISP dataset consisting on thousands of RAW-RGB image pairs captured with a professional medium-format 102MP Fujifilm camera and a popular Sony mobile camera sensor. The results demonstrate that the PyNET-V2 Mobile model can substantially surpass the quality of tradition ISP pipelines, while outperforming the previously introduced neural network-based solutions designed for fast image processing. Furthermore, we show that the proposed architecture is also compatible with the latest mobile AI accelerators such as NPUs or APUs that can be used to further reduce the latency of the model to as little as 0.5 second. The dataset, code and pre-trained models used in this paper are available on the project website: https://github.com/gmalivenko/PyNET-v2
translated by 谷歌翻译
We present the next generation of MobileNets based on a combination of complementary search techniques as well as a novel architecture design. MobileNetV3 is tuned to mobile phone CPUs through a combination of hardwareaware network architecture search (NAS) complemented by the NetAdapt algorithm and then subsequently improved through novel architecture advances. This paper starts the exploration of how automated search algorithms and network design can work together to harness complementary approaches improving the overall state of the art. Through this process we create two new MobileNet models for release: MobileNetV3-Large and MobileNetV3-Small which are targeted for high and low resource use cases. These models are then adapted and applied to the tasks of object detection and semantic segmentation. For the task of semantic segmentation (or any dense pixel prediction), we propose a new efficient segmentation decoder Lite Reduced Atrous Spatial Pyramid Pooling (LR-ASPP). We achieve new state of the art results for mobile classification, detection and segmentation. MobileNetV3-Large is 3.2% more accurate on ImageNet classification while reducing latency by 20% compared to MobileNetV2. MobileNetV3-Small is 6.6% more accurate compared to a MobileNetV2 model with comparable latency. MobileNetV3-Large detection is over 25% faster at roughly the same accuracy as Mo-bileNetV2 on COCO detection. MobileNetV3-Large LR-ASPP is 34% faster than MobileNetV2 R-ASPP at similar accuracy for Cityscapes segmentation.
translated by 谷歌翻译
Designing accurate and efficient ConvNets for mobile devices is challenging because the design space is combinatorially large. Due to this, previous neural architecture search (NAS) methods are computationally expensive. ConvNet architecture optimality depends on factors such as input resolution and target devices. However, existing approaches are too resource demanding for case-by-case redesigns. Also, previous work focuses primarily on reducing FLOPs, but FLOP count does not always reflect actual latency. To address these, we propose a differentiable neural architecture search (DNAS) framework that uses gradient-based methods to optimize Con-vNet architectures, avoiding enumerating and training individual architectures separately as in previous methods. FBNets (Facebook-Berkeley-Nets), a family of models discovered by DNAS surpass state-of-the-art models both designed manually and generated automatically. FBNet-B achieves 74.1% top-1 accuracy on ImageNet with 295M FLOPs and 23.1 ms latency on a Samsung S8 phone, 2.4x smaller and 1.5x faster than MobileNetV2-1.3[17] with similar accuracy. Despite higher accuracy and lower latency than MnasNet[20], we estimate FBNet-B's search cost is 420x smaller than MnasNet's, at only 216 GPUhours. Searched for different resolutions and channel sizes, FBNets achieve 1.5% to 6.4% higher accuracy than Mo-bileNetV2. The smallest FBNet achieves 50.2% accuracy and 2.9 ms latency (345 frames per second) on a Samsung S8. Over a Samsung-optimized FBNet, the iPhone-Xoptimized model achieves a 1.4x speedup on an iPhone X. FBNet models are open-sourced at https://github. com/facebookresearch/mobile-vision. * Work done while interning at Facebook.… Figure 1. Differentiable neural architecture search (DNAS) for ConvNet design. DNAS explores a layer-wise space that each layer of a ConvNet can choose a different block. The search space is represented by a stochastic super net. The search process trains the stochastic super net using SGD to optimize the architecture distribution. Optimal architectures are sampled from the trained distribution. The latency of each operator is measured on target devices and used to compute the loss for the super net.
translated by 谷歌翻译
随着计算机愿景任务中的神经网络的不断发展,越来越多的网络架构取得了突出的成功。作为最先进的神经网络架构之一,DenSenet捷径所有特征映射都可以解决模型深度的问题。虽然这种网络架构在低MAC(乘法和累积)上具有优异的准确性,但它需要过度推理时间。为了解决这个问题,HardNet减少了特征映射之间的连接,使得其余连接类似于谐波。然而,这种压缩方法可能导致模型精度和增加的MAC和模型大小降低。该网络架构仅减少了内存访问时间,需要改进其整体性能。因此,我们提出了一种新的网络架构,使用阈值机制来进一步优化连接方法。丢弃不同卷积层的不同数量的连接以压缩阈值中的特征映射。所提出的网络架构使用了三个数据集,CiFar-10,CiFar-100和SVHN,以评估图像分类的性能。实验结果表明,与DENSENET相比,阈值可降低推理时间高达60%,并且在这些数据集上的硬盘相比,训练速度快高达35%的训练速度和20%的误差率降低。
translated by 谷歌翻译
已经提出了高效和自适应计算机视觉系统以使计算机视觉任务,例如图像分类和对象检测,针对嵌入或移动设备进行了优化。这些解决方案最近的起源,专注于通过设计具有近似旋钮的自适应系统来优化模型(深神经网络,DNN)或系统。尽管最近的几项努力,但我们表明现有解决方案遭受了两个主要缺点。首先,系统不考虑模型的能量消耗,同时在制定要运行的模型的决定时。其次,由于其他共同居民工作负载,评估不考虑设备上的争用的实际情况。在这项工作中,我们提出了一种高效和自适应的视频对象检测系统,这是联合优化的精度,能量效率和延迟。底层Virtuoso是一个多分支执行内核,它能够在精度 - 能量 - 延迟轴上的不同运行点处运行,以及轻量级运行时调度程序,以选择最佳的执行分支以满足用户要求。要与Virtuoso相当比较,我们基准于15件最先进的或广泛使用的协议,包括更快的R-CNN(FRCNN),YOLO V3,SSD,培训台,SELSA,MEGA,REPP,FastAdapt和我们的内部FRCNN +,YOLO +,SSD +和高效+(我们的变体具有增强的手机效率)的自适应变体。通过这种全面的基准,Virtuoso对所有上述协议显示出优势,在NVIDIA Jetson Mobile GPU上的每一项效率水平上引领精度边界。具体而言,Virtuoso的准确性为63.9%,比一些流行的物体检测模型高于10%,51.1%,yolo为49.5%。
translated by 谷歌翻译
最近,面部生物识别是对传统认证系统的方便替代的巨大关注。因此,检测恶意尝试已经发现具有重要意义,导致面部抗欺骗〜(FAS),即面部呈现攻击检测。与手工制作的功能相反,深度特色学习和技术已经承诺急剧增加FAS系统的准确性,解决了实现这种系统的真实应用的关键挑战。因此,处理更广泛的发展以及准确的模型的新研究区越来越多地引起了研究界和行业的关注。在本文中,我们为自2017年以来对与基于深度特征的FAS方法相关的文献综合调查。在这一主题上阐明,基于各种特征和学习方法的语义分类。此外,我们以时间顺序排列,其进化进展和评估标准(数据集内集和数据集互联集合中集)覆盖了FAS的主要公共数据集。最后,我们讨论了开放的研究挑战和未来方向。
translated by 谷歌翻译
为了确保全球粮食安全和利益相关者的总体利润,正确检测和分类植物疾病的重要性至关重要。在这方面,基于深度学习的图像分类的出现引入了大量解决方案。但是,这些解决方案在低端设备中的适用性需要快速,准确和计算廉价的系统。这项工作提出了一种基于轻巧的转移学习方法,用于从番茄叶中检测疾病。它利用一种有效的预处理方法来增强具有照明校正的叶片图像,以改善分类。我们的系统使用组合模型来提取功能,该模型由预审计的MobilenETV2体系结构和分类器网络组成,以进行有效的预测。传统的增强方法被运行时的增加取代,以避免数据泄漏并解决类不平衡问题。来自PlantVillage数据集的番茄叶图像的评估表明,所提出的体系结构可实现99.30%的精度,型号大小为9.60mb和4.87亿个浮点操作,使其成为低端设备中现实生活的合适选择。我们的代码和型号可在https://github.com/redwankarimsony/project-tomato中找到。
translated by 谷歌翻译
Deep neural networks are state of the art methods for many learning tasks due to their ability to extract increasingly better features at each network layer. However, the improved performance of additional layers in a deep network comes at the cost of added latency and energy usage in feedforward inference. As networks continue to get deeper and larger, these costs become more prohibitive for real-time and energy-sensitive applications.To address this issue, we present BranchyNet, a novel deep network architecture that is augmented with additional side branch classifiers. The architecture allows prediction results for a large portion of test samples to exit the network early via these branches when samples can already be inferred with high confidence. BranchyNet exploits the observation that features learned at an early layer of a network may often be sufficient for the classification of many data points. For more difficult samples, which are expected less frequently, BranchyNet will use further or all network layers to provide the best likelihood of correct prediction. We study the BranchyNet architecture using several well-known networks (LeNet, AlexNet, ResNet) and datasets (MNIST, CIFAR10) and show that it can both improve accuracy and significantly reduce the inference time of the network.
translated by 谷歌翻译
我们分享了我们最近的发现,以试图培训通用分割网络的各种细胞类型和成像方式。我们的方法建立在广义的U-NET体系结构上,该体系结构允许单独评估每个组件。我们修改了传统的二进制培训目标,以包括三个类以进行直接实例细分。进行了有关培训方案,培训设置,网络骨架和各个模块的详细实验。我们提出的培训方案依次从每个数据集中吸取小匹配,并且在优化步骤之前积累了梯度。我们发现,培训通用网络的关键是所有数据集上的历史监督,并且有必要以公正的方式对每个数据集进行采样。我们的实验还表明,可能存在共同的特征来定义细胞类型和成像方式的细胞边界,这可以允许应用训练有素的模型完全看不见的数据集。一些培训技巧可以进一步提高细分性能,包括交叉渗透损失功能中的班级权重,精心设计的学习率调度程序,较大的图像作物以进行上下文信息以及不平衡类别的其他损失条款。我们还发现,由于它们更可靠的统计估计和更高的语义理解,分割性能可以受益于组规范化层和缺陷的空间金字塔池模块。我们参与了在IEEE国际生物医学成像研讨会(ISBI)2021举行的第六个细胞跟踪挑战(CTC)。我们的方法被评估为在主要曲目的初始提交期间,作为最佳亚军,并在额外的竞争中获得了第三名,以准备摘要出版物。
translated by 谷歌翻译
The automated machine learning (AutoML) field has become increasingly relevant in recent years. These algorithms can develop models without the need for expert knowledge, facilitating the application of machine learning techniques in the industry. Neural Architecture Search (NAS) exploits deep learning techniques to autonomously produce neural network architectures whose results rival the state-of-the-art models hand-crafted by AI experts. However, this approach requires significant computational resources and hardware investments, making it less appealing for real-usage applications. This article presents the third version of Pareto-Optimal Progressive Neural Architecture Search (POPNASv3), a new sequential model-based optimization NAS algorithm targeting different hardware environments and multiple classification tasks. Our method is able to find competitive architectures within large search spaces, while keeping a flexible structure and data processing pipeline to adapt to different tasks. The algorithm employs Pareto optimality to reduce the number of architectures sampled during the search, drastically improving the time efficiency without loss in accuracy. The experiments performed on images and time series classification datasets provide evidence that POPNASv3 can explore a large set of assorted operators and converge to optimal architectures suited for the type of data provided under different scenarios.
translated by 谷歌翻译
深度学习技术在各种任务中都表现出了出色的有效性,并且深度学习具有推进多种应用程序(包括在边缘计算中)的潜力,其中将深层模型部署在边缘设备上,以实现即时的数据处理和响应。一个关键的挑战是,虽然深层模型的应用通常会产生大量的内存和计算成本,但Edge设备通常只提供非常有限的存储和计算功能,这些功能可能会在各个设备之间差异很大。这些特征使得难以构建深度学习解决方案,以释放边缘设备的潜力,同时遵守其约束。应对这一挑战的一种有希望的方法是自动化有效的深度学习模型的设计,这些模型轻巧,仅需少量存储,并且仅产生低计算开销。该调查提供了针对边缘计算的深度学习模型设计自动化技术的全面覆盖。它提供了关键指标的概述和比较,这些指标通常用于量化模型在有效性,轻度和计算成本方面的水平。然后,该调查涵盖了深层设计自动化技术的三类最新技术:自动化神经体系结构搜索,自动化模型压缩以及联合自动化设计和压缩。最后,调查涵盖了未来研究的开放问题和方向。
translated by 谷歌翻译
Image super-resolution is a common task on mobile and IoT devices, where one often needs to upscale and enhance low-resolution images and video frames. While numerous solutions have been proposed for this problem in the past, they are usually not compatible with low-power mobile NPUs having many computational and memory constraints. In this Mobile AI challenge, we address this problem and propose the participants to design an efficient quantized image super-resolution solution that can demonstrate a real-time performance on mobile NPUs. The participants were provided with the DIV2K dataset and trained INT8 models to do a high-quality 3X image upscaling. The runtime of all models was evaluated on the Synaptics VS680 Smart Home board with a dedicated edge NPU capable of accelerating quantized neural networks. All proposed solutions are fully compatible with the above NPU, demonstrating an up to 60 FPS rate when reconstructing Full HD resolution images. A detailed description of all models developed in the challenge is provided in this paper.
translated by 谷歌翻译
Semantic segmentation works on the computer vision algorithm for assigning each pixel of an image into a class. The task of semantic segmentation should be performed with both accuracy and efficiency. Most of the existing deep FCNs yield to heavy computations and these networks are very power hungry, unsuitable for real-time applications on portable devices. This project analyzes current semantic segmentation models to explore the feasibility of applying these models for emergency response during catastrophic events. We compare the performance of real-time semantic segmentation models with non-real-time counterparts constrained by aerial images under oppositional settings. Furthermore, we train several models on the Flood-Net dataset, containing UAV images captured after Hurricane Harvey, and benchmark their execution on special classes such as flooded buildings vs. non-flooded buildings or flooded roads vs. non-flooded roads. In this project, we developed a real-time UNet based model and deployed that network on Jetson AGX Xavier module.
translated by 谷歌翻译
Deep convolutional neural networks have achieved great progress in image denoising tasks. However, their complicated architectures and heavy computational cost hinder their deployments on a mobile device. Some recent efforts in designing lightweight denoising networks focus on reducing either FLOPs (floating-point operations) or the number of parameters. However, these metrics are not directly correlated with the on-device latency. By performing extensive analysis and experiments, we identify the network architectures that can fully utilize powerful neural processing units (NPUs) and thus enjoy both low latency and excellent denoising performance. To this end, we propose a mobile-friendly denoising network, namely MFDNet. The experiments show that MFDNet achieves state-of-the-art performance on real-world denoising benchmarks SIDD and DND under real-time latency on mobile devices. The code and pre-trained models will be released.
translated by 谷歌翻译
In recent years, deep learning methods have been successfully applied to single-image super-resolution tasks. Despite their great performances, deep learning methods cannot be easily applied to realworld applications due to the requirement of heavy computation. In this paper, we address this issue by proposing an accurate and lightweight deep network for image super-resolution. In detail, we design an architecture that implements a cascading mechanism upon a residual network. We also present variant models of the proposed cascading residual network to further improve efficiency. Our extensive experiments show that even with much fewer parameters and operations, our models achieve performance comparable to that of state-of-the-art methods.
translated by 谷歌翻译
我们提出了一种多移民通道(MGIC)方法,该方法可以解决参数数量相对于标准卷积神经网络(CNN)中的通道数的二次增长。因此,我们的方法解决了CNN中的冗余,这也被轻量级CNN的成功所揭示。轻巧的CNN可以达到与参数较少的标准CNN的可比精度。但是,权重的数量仍然随CNN的宽度四倍地缩放。我们的MGIC体系结构用MGIC对应物代替了每个CNN块,该块利用了小组大小的嵌套分组卷积的层次结构来解决此问题。因此,我们提出的架构相对于网络的宽度线性扩展,同时保留了通道的完整耦合,如标准CNN中。我们对图像分类,分割和点云分类进行的广泛实验表明,将此策略应用于Resnet和MobilenetV3等不同体系结构,可以减少参数的数量,同时获得相似或更好的准确性。
translated by 谷歌翻译
大多数现有的深神经网络都是静态的,这意味着它们只能以固定的复杂性推断。但资源预算可以大幅度不同。即使在一个设备上,实惠预算也可以用不同的场景改变,并且对每个所需预算的反复培训网络是非常昂贵的。因此,在这项工作中,我们提出了一种称为Mutualnet的一般方法,以训练可以以各种资源约束运行的单个网络。我们的方法列举了具有各种网络宽度和输入分辨率的模型配置队列。这种相互学习方案不仅允许模型以不同的宽度分辨率配置运行,而且还可以在这些配置之间传输独特的知识,帮助模型来学习更强大的表示。 Mutualnet是一般的培训方法,可以应用于各种网络结构(例如,2D网络:MobileNets,Reset,3D网络:速度,X3D)和各种任务(例如,图像分类,对象检测,分段和动作识别),并证明了实现各种数据集的一致性改进。由于我们只培训了这一模型,它对独立培训多种型号而言,它也大大降低了培训成本。令人惊讶的是,如果动态资源约束不是一个问题,则可以使用Mutualnet来显着提高单个网络的性能。总之,Mutualnet是静态和自适应,2D和3D网络的统一方法。代码和预先训练的模型可用于\ url {https://github.com/tayang1122/mutualnet}。
translated by 谷歌翻译
为了实现不断增长的准确性,通常会开发大型和复杂的神经网络。这样的模型需要高度的计算资源,因此不能在边缘设备上部署。由于它们在几个应用领域的有用性,建立资源有效的通用网络非常感兴趣。在这项工作中,我们努力有效地结合了CNN和变压器模型的优势,并提出了一种新的有效混合体系结构。特别是在EDGENEXT中,我们引入了分裂深度转置注意力(SDTA)编码器,该编码器将输入张量分解为多个通道组,并利用深度旋转以及跨通道维度的自我注意力,以隐含地增加接受场并编码多尺度特征。我们在分类,检测和分割任务上进行的广泛实验揭示了所提出的方法的优点,优于相对较低的计算要求的最先进方法。我们具有130万参数的EDGENEXT模型在Imagenet-1k上达到71.2 \%TOP-1的精度,超过移动设备的绝对增益为2.2 \%,而拖鞋减少了28 \%。此外,我们具有560万参数的EDGENEXT模型在Imagenet-1k上达到了79.4 \%TOP-1的精度。代码和模型可在https://t.ly/_vu9上公开获得。
translated by 谷歌翻译