相比之下,图像域中的对比学习,锚定样品被迫具有尽可能近的表示。但是,强迫两个样本具有相同的表示可能会产生误导,因为数据增强技术使两个样本不同。在本文中,我们介绍了一种新的表示,分区的表示,可以在对比学习中学习锚定和正面样本的共同和独特特征。分区表示由两个部分组成:内容部分和样式部分。内容零件代表类的共同特征,样式部分代表每个样本的自己的特征,这可以导致表示数据增强方法的表示。我们可以通过将对比度学习的损失函数分别分别为两个单独的表示形式,仅将对比度学习的损失函数分解为两个术语,从而实现分区的表示形式。为了通过两个部分评估我们的表示形式,我们采用了两个框架模型:变异自动编码器(VAE)和Bootstrapyour自身潜在(BYOL)以显示内容和样式的可分离性,并分别确认分类中的概括能力。基于实验,我们表明我们的方法可以在VAE框架中分离两种类型的信息,并在线性可分离性中优于常规BYOL,并且是下游任务的一些射击学习任务。
translated by 谷歌翻译
对比学习是机器学习中最快的研究领域之一,因为它可以在没有标记数据的情况下学习有用的表示。然而,对比学学习易于特征抑制,即,它可能会丢弃与感兴趣的任务相关的重要信息,并学习无关的功能。过去的工作通过消除无关信息的手工制作的数据增强解决了这一限制。然而,这种方法不适用于所有数据集和任务。此外,当一个属性可以抑制与其他属性相关的特征时,数据增强在解决多属性分类中的功能抑制中失败。在本文中,我们分析了对比学习的目标函数,并正式证明它易于特征抑制。然后,我们提出预测对比学习(PCL),一种学习对特征抑制具有鲁棒的无监督表示的框架。关键的想法是强制学习的表示来预测输入,因此防止它丢弃重要信息。广泛的实验验证PCL是否强大地对特征抑制和优于各种数据集和任务的最先进的对比学习方法。
translated by 谷歌翻译
最近无监督的表示学习方法已经通过学习表示不变的数据增强,例如随机裁剪和彩色抖动等数据增强来生效。然而,如果依赖于数据增强的特征,例如,位置或色敏,则这种不变性可能对下游任务有害。这不是一个不监督学习的问题;我们发现即使在监督学习中也会发生这种情况,因为它还学会预测实例所有增强样本的相同标签。为避免此类失败并获得更广泛的表示,我们建议优化辅助自我监督损失,创建的AGESELF,了解两个随机增强样本之间的增强参数(例如,裁剪位置,颜色调整强度)的差异。我们的直觉是,Augelf鼓励在学习的陈述中保留增强信息,这可能有利于其可转让性。此外,Augself可以很容易地纳入最近的最先进的表示学习方法,其额外的培训成本可忽略不计。广泛的实验表明,我们的简单想法一直在各种转移学习情景中始终如一地提高了由监督和无监督方法所学到的表示的可转移性。代码可在https://github.com/hankook/augsfir。
translated by 谷歌翻译
蒙面图像建模(MIM)在各种视觉任务上取得了令人鼓舞的结果。但是,学到的表示形式的有限可区分性表现出来,使一个更强大的视力学习者还有很多值得一试。为了实现这一目标,我们提出了对比度蒙面的自动编码器(CMAE),这是一种新的自我监督的预训练方法,用于学习更全面和有能力的视觉表示。通过详细统一的对比度学习(CL)和掩盖图像模型(MIM),CMAE利用了它们各自的优势,并以强大的实例可辨别性和局部的可感知来学习表示形式。具体而言,CMAE由两个分支组成,其中在线分支是不对称的编码器编码器,而目标分支是动量更新的编码器。在培训期间,在线编码器从蒙面图像的潜在表示中重建了原始图像,以学习整体特征。馈送完整图像的目标编码器通过其在线学习通过对比度学习增强了功能可区分性。为了使CL与MIM兼容,CMAE引入了两个新组件,即用于生成合理的正视图和特征解码器的像素移位,以补充对比度对的特征。多亏了这些新颖的设计,CMAE可以有效地提高了MIM对应物的表示质量和转移性能。 CMAE在图像分类,语义分割和对象检测的高度竞争基准上实现了最先进的性能。值得注意的是,CMAE-BASE在Imagenet上获得了$ 85.3 \%$ $ TOP-1的准确性和$ 52.5 \%$ MIOU的ADE20K,分别超过了$ 0.7 \%\%$ $和$ 1.8 \%$ $。代码将公开可用。
translated by 谷歌翻译
最近,电子学习平台已经发展为学生可以发表疑问(用智能手机拍摄的快照)并在几分钟内解决的地方。但是,这些平台的质量差异很大的学生寄出疑问的数量显着增加,这不仅给教师导航解决方案带来了挑战,还增加了每个疑问的分辨率时间。两者都是不可接受的,因为高度怀疑的时间阻碍了学生学习进度的学习。这需要方法来自动识别存储库中是否存在类似的疑问,然后将其作为验证和与学生沟通的合理解决方案。监督的学习技术(如暹罗建筑)需要标签来识别比赛,这是不可行的,因为标签稀缺且昂贵。因此,在这项工作中,我们基于通过自我监督技术学到的表示形式开发了符合范式的标签不足的疑问。在BYOL的先前理论见解(Bootstrap您自己的潜在空间)的基础上,我们提出了Custom Byol,将特定于域特异性的增强与对比目标结合在一起,而不是各种适当构建的数据视图。结果强调,与BYOL和监督学习实例相比,Custom Byol分别将TOP-1匹配精度提高了大约6 \%和5 \%。我们进一步表明,基于BYOL的学习实例在标准杆上的性能比人类标签更好。
translated by 谷歌翻译
在深度学习研究中,自学学习(SSL)引起了极大的关注,引起了计算机视觉和遥感社区的兴趣。尽管计算机视觉取得了很大的成功,但SSL在地球观测领域的大部分潜力仍然锁定。在本文中,我们对在遥感的背景下为计算机视觉的SSL概念和最新发展提供了介绍,并回顾了SSL中的概念和最新发展。此外,我们在流行的遥感数据集上提供了现代SSL算法的初步基准,从而验证了SSL在遥感中的潜力,并提供了有关数据增强的扩展研究。最后,我们确定了SSL未来研究的有希望的方向的地球观察(SSL4EO),以铺平了两个领域的富有成效的相互作用。
translated by 谷歌翻译
使用超越欧几里德距离的神经网络,深入的Bregman分歧测量数据点的分歧,并且能够捕获分布的发散。在本文中,我们提出了深深的布利曼对视觉表现的对比学习的分歧,我们的目标是通过基于功能Bregman分歧培训额外的网络来提高自我监督学习中使用的对比损失。与完全基于单点之间的分歧的传统对比学学习方法相比,我们的框架可以捕获分布之间的发散,这提高了学习表示的质量。我们展示了传统的对比损失和我们提出的分歧损失优于基线的结合,并且最先前的自我监督和半监督学习的大多数方法在多个分类和对象检测任务和数据集中。此外,学习的陈述在转移到其他数据集和任务时概括了良好。源代码和我们的型号可用于补充,并将通过纸张释放。
translated by 谷歌翻译
尽管增加了大量的增强家庭,但只有几个樱桃采摘的稳健增强政策有利于自我监督的图像代表学习。在本文中,我们提出了一个定向自我监督的学习范式(DSSL),其与显着的增强符号兼容。具体而言,我们在用标准增强的视图轻度增强后调整重增强策略,以产生更难的视图(HV)。 HV通常具有与原始图像较高的偏差而不是轻度增强的标准视图(SV)。与以前的方法不同,同等对称地将所有增强视图对称地最大化它们的相似性,DSSL将相同实例的增强视图视为部分有序集(具有SV $ \ LeftrightArrow $ SV,SV $ \左路$ HV),然后装备一个定向目标函数尊重视图之间的衍生关系。 DSSL可以轻松地用几行代码实现,并且对于流行的自我监督学习框架非常灵活,包括SIMCLR,Simsiam,Byol。对CiFar和Imagenet的广泛实验结果表明,DSSL可以稳定地改善各种基线,其兼容性与更广泛的增强。
translated by 谷歌翻译
跨图像建立视觉对应是一项具有挑战性且必不可少的任务。最近,已经提出了大量的自我监督方法,以更好地学习视觉对应的表示。但是,我们发现这些方法通常无法利用语义信息,并且在低级功能的匹配方面过度融合。相反,人类的视觉能够将不同的物体区分为跟踪的借口。受此范式的启发,我们建议学习语义意识的细粒对应关系。首先,我们证明语义对应是通过一组丰富的图像级别自我监督方法隐式获得的。我们进一步设计了一个像素级的自我监督学习目标,该目标专门针对细粒的对应关系。对于下游任务,我们将这两种互补的对应表示形式融合在一起,表明它们是协同增强性能的。我们的方法超过了先前的最先进的自我监督方法,使用卷积网络在各种视觉通信任务上,包括视频对象分割,人姿势跟踪和人类部分跟踪。
translated by 谷歌翻译
Masked image modelling (e.g., Masked AutoEncoder) and contrastive learning (e.g., Momentum Contrast) have shown impressive performance on unsupervised visual representation learning. This work presents Masked Contrastive Representation Learning (MACRL) for self-supervised visual pre-training. In particular, MACRL leverages the effectiveness of both masked image modelling and contrastive learning. We adopt an asymmetric setting for the siamese network (i.e., encoder-decoder structure in both branches), where one branch with higher mask ratio and stronger data augmentation, while the other adopts weaker data corruptions. We optimize a contrastive learning objective based on the learned features from the encoder in both branches. Furthermore, we minimize the $L_1$ reconstruction loss according to the decoders' outputs. In our experiments, MACRL presents superior results on various vision benchmarks, including CIFAR-10, CIFAR-100, Tiny-ImageNet, and two other ImageNet subsets. Our framework provides unified insights on self-supervised visual pre-training and future research.
translated by 谷歌翻译
神经活动的意义和简化表示可以产生深入了解如何以及什么信息被神经回路内处理。然而,如果没有标签,也揭示了大脑和行为之间的联系的发现表示可以挑战。在这里,我们介绍了所谓的交换,VAE学习神经活动的解开表示一种新型的无监督的办法。我们的方法结合了特定实例的排列损失,试图最大限度地输入(大脑状态)的转变观点之间的代表性相似性的生成模型框架。这些转化(或增强)视图是通过掉出神经元和抖动样品中的时间,这直观地应导致网络维护既时间一致性和不变性用于表示神经状态的特定的神经元的表示创建的。通过对从数百个不同的灵长类动物大脑的神经元的模拟数据和神经录音的评价,我们表明,它是不可能建立的表示沿有关潜在维度解开神经的数据集与行为相联系。
translated by 谷歌翻译
目的:在本文中,我们旨在从大量未标记的脑电图(EEG)信号中学习强大的向量表示,以使学习的表示(1)表现得足以替代睡眠分期任务中的原始信号; (2)在较少的标签和嘈杂样本的情况下,提供了比监督模型更好的预测性能。材料和方法:我们提出了一个自我监督的模型,称为与世界表示形式(Contrawr)相比,用于EEG信号表示学习,该模型使用数据集中的全局统计信息来区分与不同睡眠阶段相关的信号。在包括在家中的三个现实世界EEG数据集上评估了Contrawr模型,这些模型既包括在家中录制设置。结果:Contrawr在三个数据集中的睡眠登台任务上,Moco,Simclr,Byol,Simsiam胜过最新的自我监督学习方法。当可用的培训标签较少时,Contrawr还会击败受监督的学习(例如,标记不到2%的数据时,精度提高了4%)。此外,该模型在2D投影中提供了信息表示。讨论:建议的模型可以推广到其他无监督的生理信号学习任务。未来的方向包括探索特定于任务的数据增强,并将自我监督与监督方法结合起来,这是基于本文自我监督学习的最初成功。结论:我们表明,Contrawr对噪声是强大的,并且可以为下游预测任务提供高质量的EEG表示。在低标签场景(例如,只有2%的数据具有标签),Contrawr的预测能力(例如,睡眠分期准确性提高了4%)比监督的基线要好得多。
translated by 谷歌翻译
基于对比度学习(CL)以成对的方式学习视觉表示。尽管流行的CL模型取得了长足的进步,但在本文中,我们发现了一种不断被忽视的现象:当CL模型接受完整图像训练时,以完整图像测试的性能要比前景区域的表现更好。当CL模型接受前景区域训练时,以完整图像测试的性能要比前景区域差。该观察结果表明,图像中的背景可能会干扰模型学习语义信息及其影响尚未完全消除。为了解决这个问题,我们建立了一个结构性因果模型(SCM),以建模背景作为混杂因素。我们提出了一种基于后门调整的正则化方法,即用元语义正常器(ICL-MSR)进行介入的对比度学习,以对所提出的SCM进行因果干预。可以将ICL-MSR纳入任何现有的CL方法中,以减轻代表学习的背景干扰。从理论上讲,我们证明ICL-MSR达到了更严格的误差。从经验上讲,我们在多个基准数据集上的实验表明,ICL-MSR能够改善不同最先进的CL方法的性能。
translated by 谷歌翻译
自我监督的学习最近在没有人类注释的情况下在表示学习方面取得了巨大的成功。主要方法(即对比度学习)通常基于实例歧视任务,即单个样本被视为独立类别。但是,假定所有样品都是不同的,这与普通视觉数据集中类似样品的自然分组相矛盾,例如同一狗的多个视图。为了弥合差距,本文提出了一种自适应方法,该方法引入了软样本间关系,即自适应软化对比度学习(ASCL)。更具体地说,ASCL将原始实例歧视任务转换为多实体软歧视任务,并自适应地引入样本间关系。作为现有的自我监督学习框架的有效简明的插件模块,ASCL就性能和效率都实现了多个基准的最佳性能。代码可从https://github.com/mrchenfeng/ascl_icpr2022获得。
translated by 谷歌翻译
收集大量人生成的健康数据(可穿戴性),但注释给机器学习模型的注释过程是不切实际的。本文讨论了使用以前应用于视觉域的自我监督损失的自我监督方法,例如以前应用于视觉域,可以应用于跨越睡眠,心脏和心脏的下游分类任务的高维健康信号。代谢条件。为此,我们适应数据增强步骤和整体架构,以满足数据(可穿戴迹线)的时间性,并通过比较其他最先进的方法(包括监督学习)和对抗的无监督来评估5个下游任务。代表学习方法。我们表明SIMCLR在大多数下游评估任务中表明了对抗性方法和完全监督的方法,并且所有自我监督方法都优于完全监督的方法。这项工作为应用于可穿戴时间级域的对比方法提供了全面的基准,显示了下游临床结果的任务不可知论见的承诺。
translated by 谷歌翻译
监督学习可以学习大型代表性空间,这对于处理困难的学习任务至关重要。然而,由于模型的设计,经典图像分类方法争取在处理小型数据集时概括为新的问题和新情况。事实上,监督学习可能失去图像特征的位置,这导致在非常深刻的架构中的监督崩溃。在本文中,我们调查了如何有效地对未标记数据的强大和充分增强的自我监督,可以有效地培训神经网络的第一层,甚至比监督学习更好,无需数百万标记的数据。主要目标是通过获取通用任务 - 不可知的低级功能来断开像素数据与注释的连接。此外,我们调查视觉变形金刚(VIV)并表明,从自我监督架构中得出的低级功能可以提高这种紧急架构的鲁棒性和整体性能。我们在最小的开源数据集STL-​​10上评估了我们的方法,当从自我监督的学习架构输入到vit而不是原始时,我们获得了从41.66%的显着提升到83.25%。图片。
translated by 谷歌翻译
尽管最近通过剩余网络的代表学习中的自我监督方法取得了进展,但它们仍然对ImageNet分类基准进行了高度的监督学习,限制了它们在性能关键设置中的适用性。在MITROVIC等人的现有理论上洞察中建立2021年,我们提出了RELICV2,其结合了明确的不变性损失,在各种适当构造的数据视图上具有对比的目标。 Relicv2在ImageNet上实现了77.1%的前1个分类准确性,使用线性评估使用Reset50架构和80.6%,具有较大的Reset型号,优于宽边缘以前的最先进的自我监督方法。最值得注意的是,RelicV2是使用一系列标准Reset架构始终如一地始终优先于类似的对比较中的监督基线的第一个表示学习方法。最后,我们表明,尽管使用Reset编码器,Relicv2可与最先进的自我监控视觉变压器相媲美。
translated by 谷歌翻译
通过最大化示例的不同转换“视图”之间的相似性来构建自我监督学习(SSL)构建表示的最先进的方法。然而,在用于创建视图的转换中没有足够的多样性,难以克服数据中的滋扰变量并构建丰富的表示。这激励了数据集本身来查找类似但不同的样本,以彼此的视图。在本文中,我们介绍了我自己的观点(MISOW),一种新的自我监督学习方法,在数据集中定义预测的不同目标。我们的方法背后的想法是主动挖掘观点,发现在网络的表示空间中的邻居中的样本,然后从一个样本的潜在表示,附近样本的表示。在展示计算机愿景中使用的基准测试中,我们突出了在神经科学的新应用中突出了这个想法的力量,其中SSL尚未应用。在测试多单元神经记录时,我们发现Myow在所有示例中表现出其他自我监督的方法(在某些情况下超过10%),并且经常超越监督的基线。通过MOSO,我们表明可以利用数据的多样性来构建丰富的观点,并在增强的新域中利用自我监督,其中包括有限或未知。
translated by 谷歌翻译
数据增强模块用于对比学习将给定的数据示例转换为两个视图,这被认为是必不可少的且不可替代的。但是,多个数据增强的预定组成带来了两个缺点。首先,增强类型的人工选择为模型带来了特定的代表性不变,它们对不同的下游任务具有不同程度的积极和负面影响。在培训期间,平等处理每种类型的增强性,使该模型学习了各种下游任务的非最佳表示,并限制了事先选择增强类型的灵活性。其次,在经典的对比度学习方法中使用的强大数据增强可能会在某些情况下带来太多的不变性,而对于某些下游任务至关重要的细粒度可能会丢失。本文提出了一种通用方法,以考虑在一般的对比学习框架中考虑在何处以及与什么对比来减轻这两个问题。我们首先建议根据每个数据增强的重要性,在模型的不同深度学习不同的增强不变,而不是在骨干中均匀学习代表性不变。然后,我们建议用增强嵌入扩展对比内容,以减少强大数据增强的误导效果。基于几种基线方法的实验表明,我们在分类,检测和分割下游任务上学习更好的各种基准。
translated by 谷歌翻译
许多最近的自我监督学习方法在图像分类和其他任务上表现出了令人印象深刻的表现。已经使用了一种令人困惑的多种技术,并不总是清楚地了解其收益的原因,尤其是在组合使用时。在这里,我们将图像的嵌入视为点粒子,并将模型优化视为该粒子系统上的动态过程。我们的动态模型结合了类似图像的吸引力,避免局部崩溃的局部分散力以及实现颗粒的全球均匀分布的全局分散力。动态透视图突出了使用延迟参数图像嵌入(a la byol)以及同一图像的多个视图的优点。它还使用纯动态的局部分散力(布朗运动),该分散力比其他方法显示出改善的性能,并且不需要其他粒子坐标的知识。该方法称为MSBREG,代表(i)多视质心损失,它施加了吸引力的力来将不同的图像视图嵌入到其质心上,(ii)奇异值损失,将粒子系统推向空间均匀的密度( iii)布朗扩散损失。我们评估MSBREG在ImageNet上的下游分类性能以及转移学习任务,包括细粒度分类,多类对象分类,对象检测和实例分段。此外,我们还表明,将我们的正则化术语应用于其他方法,进一步改善了其性能并通过防止模式崩溃来稳定训练。
translated by 谷歌翻译