本文介绍了我们参与FETA挑战2021的方法(团队名称:特拉比特)。认为医学图像分割的卷积神经网络的性能被认为与训练数据的数量正相关。 FETA挑战不会限制参与者仅使用提供的培训数据,还可以使用其他公共可用的来源。然而,开放式胎儿脑数据仍然有限。因此,有利的策略可以扩展训练数据以覆盖更广泛的围产期脑成像来源。除了敌人挑战数据之外,围产期脑部MRIS,目前可公开可用,跨越正常和病理胎儿地图空间以及新生儿扫描。然而,在不同数据集中分段的围产期脑MRIS通常具有不同的注释协议。这使得将这些数据集结合起来训练深度神经网络的挑战。我们最近提出了一系列损失职能,标签集丢失功能,用于部分监督学习。标签集丢失功能允许使用部分分段图像培训深度神经网络,即某些类可以将某些类分为超级类别。我们建议使用标签集丢失功能来通过合并几个公共数据集来改善多级胎儿脑细分的最先进的深度学习管道的分割性能。为了促进可延流性,我们的方法不会引入任何额外的超参数调整。
translated by 谷歌翻译
来自多个磁共振成像(MRI)方式的脑肿瘤分割是医学图像计算中的具有挑战性的任务。主要挑战在于各种扫描仪和成像协议的普遍性。在本文中,我们探讨了在不增加推理时间的情况下增加模型稳健性的策略。为此目的,我们探索使用不同损失,优化仪和培训验证数据拆分培训的型号的强大合奏。重要的是,我们探讨了U-Net架构的瓶颈中的变压器。虽然我们在瓶颈中发现变压器比平均基线U-Net更差,但是广义的Wasserstein骰子损失一致地产生优异的结果。此外,我们采用了高效的测试时间增强策略,以实现更快和强大的推论。我们的最终集合具有测试时间增强的七个3D U-Nets的平均骰子得分为89.4%,平均HAUSDORFF 95%距离10.0 mm在Brats 2021测试数据集时。我们的代码和培训的型号在https://github.com/lucasfidon/trabit_brats2021上公开提供。
translated by 谷歌翻译
医学图像分割的深度学习模型可能会出乎意料地且出乎意料地失败,而与训练图像相比,在不同中心获得的病理案例和图像,标签错误违反了专家知识。此类错误破坏了对医学图像细分的深度学习模型的可信赖性。检测和纠正此类故障的机制对于将该技术安全地转化为诊所至关重要,并且可能是对未来人工智能法规(AI)的要求。在这项工作中,我们提出了一个值得信赖的AI理论框架和一个实用系统,该系统可以使用后备方法和基于Dempster-Shafer理论的失败机制增强任何骨干AI系统。我们的方法依赖于可信赖的AI的可行定义。我们的方法会自动放弃由骨干AI预测的体素级标签,该标签违反了专家知识,并依赖于这些体素的后备。我们证明了拟议的值得信赖的AI方法在最大的报告的胎儿MRI的注释数据集中,由13个中心的540个手动注释的胎儿脑3D T2W MRI组成。我们值得信赖的AI方法改善了在各个中心获得的胎儿脑MRI和各种脑异常的胎儿的最先进的主链AI的鲁棒性。
translated by 谷歌翻译
Glioblastomas是最具侵略性的快速生长的主要脑癌,起源于大脑的胶质细胞。准确鉴定恶性脑肿瘤及其子区域仍然是医学图像分割中最具挑战性问题之一。脑肿瘤分割挑战(Brats)是自动脑胶质细胞瘤分割算法的流行基准,自于其启动。在今年的挑战中,Brats 2021提供了2,000名术前患者的最大多参数(MPMRI)数据集。在本文中,我们提出了两个深度学习框架的新聚合,即在术前MPMRI中的自动胶质母细胞瘤识别的Deepseg和NNU-Net。我们的集合方法获得了92.00,87.33和84.10和Hausdorff距离为3.81,8.91和16.02的骰子相似度分数,用于增强肿瘤,肿瘤核心和全肿瘤区域,单独进行。这些实验结果提供了证据表明它可以在临床上容易地应用,从而助攻脑癌预后,治疗计划和治疗反应监测。
translated by 谷歌翻译
Automatic segmentation is essential for the brain tumor diagnosis, disease prognosis, and follow-up therapy of patients with gliomas. Still, accurate detection of gliomas and their sub-regions in multimodal MRI is very challenging due to the variety of scanners and imaging protocols. Over the last years, the BraTS Challenge has provided a large number of multi-institutional MRI scans as a benchmark for glioma segmentation algorithms. This paper describes our contribution to the BraTS 2022 Continuous Evaluation challenge. We propose a new ensemble of multiple deep learning frameworks namely, DeepSeg, nnU-Net, and DeepSCAN for automatic glioma boundaries detection in pre-operative MRI. It is worth noting that our ensemble models took first place in the final evaluation on the BraTS testing dataset with Dice scores of 0.9294, 0.8788, and 0.8803, and Hausdorf distance of 5.23, 13.54, and 12.05, for the whole tumor, tumor core, and enhancing tumor, respectively. Furthermore, the proposed ensemble method ranked first in the final ranking on another unseen test dataset, namely Sub-Saharan Africa dataset, achieving mean Dice scores of 0.9737, 0.9593, and 0.9022, and HD95 of 2.66, 1.72, 3.32 for the whole tumor, tumor core, and enhancing tumor, respectively. The docker image for the winning submission is publicly available at (https://hub.docker.com/r/razeineldin/camed22).
translated by 谷歌翻译
我们为Brats21挑战中的脑肿瘤分割任务提出了优化的U-Net架构。为了找到最佳模型架构和学习时间表,我们运行了一个广泛的消融研究来测试:深度监督损失,焦点,解码器注意,下降块和残余连接。此外,我们搜索了U-Net编码器的最佳深度,卷积通道数量和后处理策略。我们的方法赢得了验证阶段,并在测试阶段进行了第三位。我们已开放源代码以在NVIDIA深度学习示例GitHub存储库中重现我们的Brats21提交。
translated by 谷歌翻译
Skull Stripping is a requisite preliminary step in most diagnostic neuroimaging applications. Manual Skull Stripping methods define the gold standard for the domain but are time-consuming and challenging to integrate into pro-cessing pipelines with a high number of data samples. Automated methods are an active area of research for head MRI segmentation, especially deep learning methods such as U-Net architecture implementations. This study compares Vanilla, Residual, and Dense 2D U-Net architectures for Skull Stripping. The Dense 2D U-Net architecture outperforms the Vanilla and Residual counterparts by achieving an accuracy of 99.75% on a test dataset. It is observed that dense interconnections in a U-Net encourage feature reuse across layers of the architecture and allow for shallower models with the strengths of a deeper network.
translated by 谷歌翻译
临床实践中使用的医学图像是异质的,与学术研究中研究的扫描质量不同。在解剖学,伪影或成像参数不寻常或方案不同的极端情况下,预处理会分解。最需要对这些变化的方法可靠。提出了一种新颖的深度学习方法,以将人脑快速分割为132个区域。提出的模型使用有效的U-NET型网络,并从不同视图和分层关系的交点上受益,以在端到端训练期间融合正交2D平面和脑标签。部署了弱监督的学习,以利用部分标记的数据来进行整个大脑分割和颅内体积(ICV)的估计。此外,数据增强用于通过生成具有较高的脑扫描的磁共振成像(MRI)数据来扩展模型训练,同时保持数据隐私。提出的方法可以应用于脑MRI数据,包括头骨或任何其他工件,而无需预处理图像或性能下降。与最新的一些实验相比,使用了不同的Atlases的几项实验,以评估受过训练模型的分割性能,并且与不同内部和不同内部和不同内部方法的现有方法相比,结果显示了较高的分割精度和鲁棒性。间域数据集。
translated by 谷歌翻译
State-of-the-art brain tumor segmentation is based on deep learning models applied to multi-modal MRIs. Currently, these models are trained on images after a preprocessing stage that involves registration, interpolation, brain extraction (BE, also known as skull-stripping) and manual correction by an expert. However, for clinical practice, this last step is tedious and time-consuming and, therefore, not always feasible, resulting in skull-stripping faults that can negatively impact the tumor segmentation quality. Still, the extent of this impact has never been measured for any of the many different BE methods available. In this work, we propose an automatic brain tumor segmentation pipeline and evaluate its performance with multiple BE methods. Our experiments show that the choice of a BE method can compromise up to 15.7% of the tumor segmentation performance. Moreover, we propose training and testing tumor segmentation models on non-skull-stripped images, effectively discarding the BE step from the pipeline. Our results show that this approach leads to a competitive performance at a fraction of the time. We conclude that, in contrast to the current paradigm, training tumor segmentation models on non-skull-stripped images can be the best option when high performance in clinical practice is desired.
translated by 谷歌翻译
来自磁共振成像(MRI)数据的自动脑肿瘤分割在评估治疗和个性化治疗分层的肿瘤反应中起重要作用.Manual分割是乏味的,主观的脑肿瘤细分算法有可能提供目标并且快速肿瘤分割。但是,这种算法的培训需要大量数据集,这些数据集并不总是可用的。数据增强技术可以减少对大型数据集的需求。然而,当前方法主要是参数,并且可能导致次优的性能。我们引入了两个非参数化的脑肿瘤分割的数据增强方法:混合结构正则化(MSR)和Shuffle像素噪声(SPN).we评估了MSR和SPN增强对大脑肿瘤分割(BRATS)2018挑战数据集的附加值与编码器 - 解码器NNU-NNU-NNU-NET架构作为分割算法。从MSR和SPN改善NNU-NET分段与参数高斯噪声增强相比的准确性。当分别将MSR与肿瘤核心和全肿瘤实验的非参数增强分别增加了80%至82%和p值= 0.0022,00028。所提出的MSR和SPN增强有可能在其他任务中提高神经网络性能。
translated by 谷歌翻译
从磁共振成像(MRI)数据(称为颅骨条状)中去除非脑信号是许多神经图像分析流的组成部分。尽管它们很丰富,但通常是针对具有特定采集特性的图像量身定制的,即近乎各向异性的分辨率和T1加权(T1W)MRI对比度,这些分辨率在研究环境中很普遍。结果,现有的工具倾向于适应其他图像类型,例如在诊所常见的快速旋转回声(FSE)MRI中获得的厚切片。尽管近年来基于学习的大脑提取方法已获得吸引力,但这些方法面临着类似的负担,因为它们仅对训练过程中看到的图像类型有效。为了在成像协议的景观中实现强大的颅骨缠身,我们引入了Synthstrip,这是一种快速,基于学习的脑萃取工具。通过利用解剖学分割来生成具有解剖学,强度分布和远远超过现实医学图像范围的完全合成训练数据集,Synthstrip学会了成功推广到各种真实获得的大脑图像,从而消除了使用训练数据的需求目标对比。我们证明了合成条的功效对受试者人群的各种图像采集和决议的功效,从新生儿到成人。我们显示出与流行的颅骨基线的准确性的实质性提高 - 所有这些基线都采用单个训练有素的模型。我们的方法和标记的评估数据可在https://w3id.org/synthstrip上获得。
translated by 谷歌翻译
域适应(DA)最近在医学影像社区提出了强烈的兴趣。虽然已经提出了大量DA技术进行了用于图像分割,但大多数这些技术已经在私有数据集或小公共可用数据集上验证。此外,这些数据集主要解决了单级问题。为了解决这些限制,与第24届医学图像计算和计算机辅助干预(Miccai 2021)结合第24届国际会议组织交叉模态域适应(Crossmoda)挑战。 Crossmoda是无监督跨型号DA的第一个大型和多级基准。挑战的目标是分割参与前庭施瓦新瘤(VS)的后续和治疗规划的两个关键脑结构:VS和Cochleas。目前,使用对比度增强的T1(CET1)MRI进行VS患者的诊断和监测。然而,使用诸如高分辨率T2(HRT2)MRI的非对比度序列越来越感兴趣。因此,我们创建了一个无人监督的跨模型分段基准。训练集提供注释CET1(n = 105)和未配对的非注释的HRT2(n = 105)。目的是在测试集中提供的HRT2上自动对HRT2进行单侧VS和双侧耳蜗分割(n = 137)。共有16支球队提交了评估阶段的算法。顶级履行团队达成的表现水平非常高(最佳中位数骰子 - vs:88.4%; Cochleas:85.7%)并接近完全监督(中位数骰子 - vs:92.5%;耳蜗:87.7%)。所有顶级执行方法都使用图像到图像转换方法将源域图像转换为伪目标域图像。然后使用这些生成的图像和为源图像提供的手动注释进行培训分割网络。
translated by 谷歌翻译
Brain tumor imaging has been part of the clinical routine for many years to perform non-invasive detection and grading of tumors. Tumor segmentation is a crucial step for managing primary brain tumors because it allows a volumetric analysis to have a longitudinal follow-up of tumor growth or shrinkage to monitor disease progression and therapy response. In addition, it facilitates further quantitative analysis such as radiomics. Deep learning models, in particular CNNs, have been a methodology of choice in many applications of medical image analysis including brain tumor segmentation. In this study, we investigated the main design aspects of CNN models for the specific task of MRI-based brain tumor segmentation. Two commonly used CNN architectures (i.e. DeepMedic and U-Net) were used to evaluate the impact of the essential parameters such as learning rate, batch size, loss function, and optimizer. The performance of CNN models using different configurations was assessed with the BraTS 2018 dataset to determine the most performant model. Then, the generalization ability of the model was assessed using our in-house dataset. For all experiments, U-Net achieved a higher DSC compared to the DeepMedic. However, the difference was only statistically significant for whole tumor segmentation using FLAIR sequence data and tumor core segmentation using T1w sequence data. Adam and SGD both with the initial learning rate set to 0.001 provided the highest segmentation DSC when training the CNN model using U-Net and DeepMedic architectures, respectively. No significant difference was observed when using different normalization approaches. In terms of loss functions, a weighted combination of soft Dice and cross-entropy loss with the weighting term set to 0.5 resulted in an improved segmentation performance and training stability for both DeepMedic and U-Net models.
translated by 谷歌翻译
最近关于Covid-19的研究表明,CT成像提供了评估疾病进展和协助诊断的有用信息,以及帮助理解疾病。有越来越多的研究,建议使用深度学习来使用胸部CT扫描提供快速准确地定量Covid-19。兴趣的主要任务是胸部CT扫描的肺和肺病变的自动分割,确认或疑似Covid-19患者。在这项研究中,我们使用多中心数据集比较12个深度学习算法,包括开源和内部开发的算法。结果表明,合并不同的方法可以提高肺部分割,二元病变分割和多种子病变分割的总体测试集性能,从而分别为0.982,0.724和0.469的平均骰子分别。将得到的二元病变分段为91.3ml的平均绝对体积误差。通常,区分不同病变类型的任务更加困难,分别具有152mL的平均绝对体积差,分别为整合和磨碎玻璃不透明度为0.369和0.523的平均骰子分数。所有方法都以平均体积误差进行二元病变分割,该分段优于人类评估者的视觉评估,表明这些方法足以用于临床实践中使用的大规模评估。
translated by 谷歌翻译
磁共振成像(MRI)数据由于设备制造商,扫描协议和受试者间变异性的差异而具有异质性。减轻MR图像异质性的一种常规方法是应用预处理转换,例如解剖学比对,体素重新采样,信号强度均衡,图像降解和利益区域的定位(ROI)。尽管预处理管道标准化了图像外观,但其对图像分割质量和深度神经网络(DNN)的其他下游任务的影响从未经过严格研究。在这里,我们报告了一项关于TCIA-GBM开源数据集的多模式MRI MRI脑癌图像分割的全面研究。我们的结果表明,大多数流行的标准化步骤对人工神经网络的性能没有任何价值。此外,预处理可以妨碍模型性能。我们建议,由于信号差异降低了图像标准化,图像强度归一化方法不会导致模型准确性。最后,如果根据临床相关的指标来衡量,我们表明了型型型在数据预处理中的贡献几乎可以忽略不计。我们表明,准确分析的唯一必不可少的转换是整个数据集的体素间距的统一。相反,非刚性地图集注册形式的解剖学对齐不是必需的,大多数强度均衡步骤不能提高模型的生产力。
translated by 谷歌翻译
限制机器学习系统的故障对于安全至关重要的应用至关重要。为了提高机器学习系统的鲁棒性,已提出了分配鲁棒优化(DRO)作为经验风险最小化(ERM)的概括。然而,由于与ERM的随机梯度下降(SGD)优化器相比,由于可用于DRO的优化器的相对效率相对效率相对低效率,因此在深度学习中的使用受到了严格的限制。我们建议使用硬度加权采样的SGD,这是机器学习中DRO的原则性高效优化方法,在深度学习的背景下特别适合。与实践中的硬示例挖掘策略类似,所提出的算法可以直接实施和计算,并且与用于深度学习的基于SGD的优化器一样有效,需要最小的开销计算。与典型的临时硬采矿方法相反,我们证明了我们的DRO算法的收敛性,用于过度参数化的深度学习网络,并具有RELU激活以及有限数量的层和参数。我们对MRI中胎儿脑3D MRI分割和脑肿瘤分割的实验证明了我们方法的可行性和有用性。使用我们的硬度加权采样进行训练,最先进的深度学习管道可改善自动胎儿脑中解剖学变异的鲁棒性3D MRI分割,并改善了对脑肿瘤分割的图像方案变化的鲁棒性。我们的代码可从https://github.com/lucasfidon/hardnessweightedsampler获得。
translated by 谷歌翻译
扩散加权图像(DWIS)中的噪声降低了扩散张量磁共振成像(DTI)导出的微结构参数的准确性和精度,并导致延长的采集时间来实现改进的信噪比(SNR)。基于深度学习的图像去噪使用卷积神经网络(CNNS)具有卓越的性能,但通常需要额外的高SNR数据来监督CNN的培训,这降低了实际可行性。我们开发了一个自我监督的深度学习的方法,标题为“SDNDTI”,用于去噪DTI数据,这不需要额外的高SNR数据进行培训。具体地,SDNDTI将多向DTI数据划分为许多子集,每个子​​集中沿着沿着最佳选择的扩散编码方向组成的六个DWI卷,该编码方向是对张力配件的稳健,然后沿着拟合的扩散张量沿所有获取的方向合成DWI体积使用数据的每个子集作为CNN的输入数据。另一方面,SDNDTI沿着使用所有获取的数据作为训练目标的扩散张量,沿着获取的扩散编码方向合成DWI卷。 SDNDTI使用深3维CNN从合成的DWI卷中的每个子集中消除噪声,以匹配清洁器目标DWI卷的质量,通过平均所有去噪数据的所有子集实现更高的SNR。 SDNDTI的去噪功效在于人类连接项目(HCP)提供的两种数据集和衰老中的寿命HCP。 SDNDTI结果保留了图像清晰度和纹理细节,并大大改善了原始数据的影响。 SDNDTI的结果与来自最先进的传统去噪算法包括BM4D,AONLM和MPPCA的常规去噪算法的结果相当。
translated by 谷歌翻译
MRI中胎儿结构的体积测量很耗时,并且容易发生错误,因此需要自动分割。由于胎盘模糊边界和胎儿脑皮层复杂的褶皱,胎盘分割和准确的胎儿脑分割进行回旋评估特别具有挑战性。在本文中,我们研究了对问题的轮廓骰子损失的使用,并将其与其他边界损失以及联合骰子和横向内向损失进行比较。通过侵蚀,扩张和XOR操作员有效地计算出每个切片的损失。我们描述了类似于轮廓骰子指标的损失的新公式。骰子损失和轮廓骰子的组合为胎盘分割提供了最佳性能。对于胎儿脑部分割,最佳性能的损失是结合骰子丢失,随后是骰子和轮廓骰子损失的骰子,其性能比其他边界损失更好。
translated by 谷歌翻译
简介白质超强度(WMHS)的自动分割是磁共振成像(MRI)神经影像分析的重要步骤。流体减弱的反转恢复(FLAIR加权)是MRI对比度,对于可视化和量化WMHS,这是脑小血管疾病和阿尔茨海默氏病(AD)特别有用的。临床MRI方案迁移到三维(3D)FLAIR加权的采集,以在所有三个体素维度中实现高空间分辨率。当前的研究详细介绍了深度学习工具的部署,以使自动化的WMH分割和表征从获得的3D Flair加权图像作为国家广告成像计划的一部分获得。 DDI研究中的642名参与者(283名男性,平均年龄:(65.18 +/- 9.33)年)中的材料和方法,在五个国家收集地点进行了培训和验证两个内部网络。在642名参与者的内部数据和一个外部数据集中,对三个模型进行了测试,其中包含来自国际合作者的29个情况。这些测试集进行了独立评估。使用了五个已建立的WMH性能指标与地面真理人体分割进行比较。测试的三个网络的结果,3D NNU-NET具有最佳性能,平均骰子相似性系数得分为0.78 +/- 0.10,其性能优于内部开发的2.5D模型和SOTA DEEP DEEP BAYESIAN网络。结论MRI协议中3D Flair加权图像的使用越来越多,我们的结果表明,WMH分割模型可以在3D数据上进行训练,并产生与无需更高的或更好的无需先进的WMH分割性能用于包括T1加权图像系列。
translated by 谷歌翻译
UTERO中显影人脑的定量评估至关重要,以完全理解神经发育。因此,正在开发自动化的多组织胎儿脑分段算法,这反过来需要训练注释数据。然而,可用的注释的胎儿脑数据集是有限的数量和异质性,妨碍稳健的细分域的域适应策略。在这种情况下,我们使用Fabian,胎儿脑磁共振采集数值模拟,模拟胎儿脑的各种现实磁共振图像以及其类标签。我们证明,这些多种合成注释数据,无成本生成并使用目标超分辨率技术进一步重建,可以成功地用于分段七种脑组织的深度学习方法的域改性。总体而言,分割的准确性显着增强,特别是在皮质灰质,白质,小脑,深灰色物质和脑干中。
translated by 谷歌翻译