机器学习研究取决于客观解释,可比和可重复的算法基准。我们倡导使用策划,全面套房的机器学习任务,以标准化基准的设置,执行和报告。我们通过帮助创建和利用这些基准套件的软件工具来实现这一目标。这些无缝集成到OpenML平台中,并通过Python,Java和R. OpenML基准套件(A)的接口访问,易于使用标准化的数据格式,API和客户端库; (b)附带的数据集具有广泛的元信息; (c)允许在未来的研究中共享和重复使用基准。然后,我们为分类提供了一个仔细的策划和实用的基准测试套件:OpenML策划分类基准测试套件2018(OpenML-CC18)。最后,我们讨论了使用案例和应用程序,这些案例和应用程序尤其展示了OpenML基准套件和OpenML-CC18的有用性。
translated by 谷歌翻译
比较不同的汽车框架是具有挑战性的,并且经常做错了。我们引入了一个开放且可扩展的基准测试,该基准遵循最佳实践,并在比较自动框架时避免常见错误。我们对71个分类和33项回归任务进行了9个著名的自动框架进行了详尽的比较。通过多面分析,评估模型的准确性,与推理时间的权衡以及框架失败,探索了自动框架之间的差异。我们还使用Bradley-terry树来发现相对自动框架排名不同的任务子集。基准配备了一个开源工具,该工具与许多自动框架集成并自动化经验评估过程端到端:从框架安装和资源分配到深入评估。基准测试使用公共数据集,可以轻松地使用其他Automl框架和任务扩展,并且具有最新结果的网站。
translated by 谷歌翻译
Many sciences have made significant breakthroughs by adopting online tools that help organize, structure and mine information that is too detailed to be printed in journals. In this paper, we introduce OpenML, a place for machine learning researchers to share and organize data in fine detail, so that they can work more effectively, be more visible, and collaborate with others to tackle harder problems. We discuss how OpenML relates to other examples of networked science and what benefits it brings for machine learning research, individual scientists, as well as students and practitioners.
translated by 谷歌翻译
大多数机器学习算法由一个或多个超参数配置,必须仔细选择并且通常会影响性能。为避免耗时和不可递销的手动试验和错误过程来查找性能良好的超参数配置,可以采用各种自动超参数优化(HPO)方法,例如,基于监督机器学习的重新采样误差估计。本文介绍了HPO后,本文审查了重要的HPO方法,如网格或随机搜索,进化算法,贝叶斯优化,超带和赛车。它给出了关于进行HPO的重要选择的实用建议,包括HPO算法本身,性能评估,如何将HPO与ML管道,运行时改进和并行化结合起来。这项工作伴随着附录,其中包含关于R和Python的特定软件包的信息,以及用于特定学习算法的信息和推荐的超参数搜索空间。我们还提供笔记本电脑,这些笔记本展示了这项工作的概念作为补充文件。
translated by 谷歌翻译
Establishing open and general benchmarks has been a critical driving force behind the success of modern machine learning techniques. As machine learning is being applied to broader domains and tasks, there is a need to establish richer and more diverse benchmarks to better reflect the reality of the application scenarios. Graph learning is an emerging field of machine learning that urgently needs more and better benchmarks. To accommodate the need, we introduce Graph Learning Indexer (GLI), a benchmark curation platform for graph learning. In comparison to existing graph learning benchmark libraries, GLI highlights two novel design objectives. First, GLI is designed to incentivize \emph{dataset contributors}. In particular, we incorporate various measures to minimize the effort of contributing and maintaining a dataset, increase the usability of the contributed dataset, as well as encourage attributions to different contributors of the dataset. Second, GLI is designed to curate a knowledge base, instead of a plain collection, of benchmark datasets. We use multiple sources of meta information to augment the benchmark datasets with \emph{rich characteristics}, so that they can be easily selected and used in downstream research or development. The source code of GLI is available at \url{https://github.com/Graph-Learning-Benchmarks/gli}.
translated by 谷歌翻译
Machine Learning for Source Code (ML4Code) is an active research field in which extensive experimentation is needed to discover how to best use source code's richly structured information. With this in mind, we introduce JEMMA, an Extensible Java Dataset for ML4Code Applications, which is a large-scale, diverse, and high-quality dataset targeted at ML4Code. Our goal with JEMMA is to lower the barrier to entry in ML4Code by providing the building blocks to experiment with source code models and tasks. JEMMA comes with a considerable amount of pre-processed information such as metadata, representations (e.g., code tokens, ASTs, graphs), and several properties (e.g., metrics, static analysis results) for 50,000 Java projects from the 50KC dataset, with over 1.2 million classes and over 8 million methods. JEMMA is also extensible allowing users to add new properties and representations to the dataset, and evaluate tasks on them. Thus, JEMMA becomes a workbench that researchers can use to experiment with novel representations and tasks operating on source code. To demonstrate the utility of the dataset, we also report results from two empirical studies on our data, ultimately showing that significant work lies ahead in the design of context-aware source code models that can reason over a broader network of source code entities in a software project, the very task that JEMMA is designed to help with.
translated by 谷歌翻译
机器学习(ML)研究通常集中在模型上,而最突出的数据集已用于日常的ML任务,而不考虑这些数据集对基本问题的广度,困难和忠诚。忽略数据集的基本重要性已引起了重大问题,该问题涉及现实世界中的数据级联以及数据集驱动标准的模型质量饱和,并阻碍了研究的增长。为了解决此问题,我们提出Dataperf,这是用于评估ML数据集和数据集工作算法的基准软件包。我们打算启用“数据棘轮”,其中培训集将有助于评估相同问题的测试集,反之亦然。这种反馈驱动的策略将产生一个良性的循环,该循环将加速以数据为中心的AI。MLCommons协会将维护Dataperf。
translated by 谷歌翻译
This paper presents the OPUS ecosystem with a focus on the development of open machine translation models and tools, and their integration into end-user applications, development platforms and professional workflows. We discuss our on-going mission of increasing language coverage and translation quality, and also describe on-going work on the development of modular translation models and speed-optimized compact solutions for real-time translation on regular desktops and small devices.
translated by 谷歌翻译
无论是在功能选择的领域还是可解释的AI领域,都有基于其重要性的“排名”功能的愿望。然后可以将这种功能重要的排名用于:(1)减少数据集大小或(2)解释机器学习模型。但是,在文献中,这种特征排名没有以系统的,一致的方式评估。许多论文都有不同的方式来争论哪些具有重要性排名最佳的特征。本文通过提出一种新的评估方法来填补这一空白。通过使用合成数据集,可以事先知道特征重要性得分,从而可以进行更系统的评估。为了促进使用新方法的大规模实验,在Python建造了一个名为FSEVAL的基准测定框架。该框架允许并行运行实验,并在HPC系统上的计算机上分布。通过与名为“权重和偏见”的在线平台集成,可以在实时仪表板上进行交互探索图表。该软件作为开源软件发布,并在PYPI平台上以包裹发行。该研究结束时,探索了一个这样的大规模实验,以在许多方面找到参与算法的优势和劣势。
translated by 谷歌翻译
在开发和分析新的高参数优化方法时,在经过良好策划的基准套件上进行经验评估和比较至关重要。在这项工作中,我们提出了一套新的具有挑战性和相关的基准问题,这些问题是由此类基准测试的理想属性和要求所激发的。我们新的基于替代物的基准集合包含14个方案,这些方案总共构成了700多个多保体超参数优化问题,所有这些方案都可以实现多目标超参数优化。此外,我们从经验上将基于替代物的基准测试与更广泛的表格基准进行了比较,并证明后者可能会在HPO方法的性能排名中产生不忠实的结果。我们检查并比较了根据定义要求的基准收集,并提出了一个单目标和多目标基准套件,我们在基准实验中比较了7个单目标和7个多目标优化器。我们的软件可从[https://github.com/slds-lmu/yahpo_gym]获得。
translated by 谷歌翻译
创新是经济和社会发展的主要驱动力,有关多种创新的信息嵌入了专利和专利申请的半结构化数据中。尽管在专利数据中表达的创新的影响和新颖性很难通过传统手段来衡量,但ML提供了一套有希望的技术来评估新颖性,汇总贡献和嵌入语义。在本文中,我们介绍了Harvard USPTO专利数据集(HUPD),该数据集是2004年至2004年之间提交给美国专利商业办公室(USPTO)的大型,结构化和多用途的英语专利专利申请。 2018年。HUPD拥有超过450万张专利文件,是可比的Coldia的两到三倍。与以前在NLP中提出的专利数据集不同,HUPD包含了专利申请的发明人提交的版本(不是授予专利的最终版本),其中允许我们在第一次使用NLP方法进行申请时研究专利性。它在包含丰富的结构化元数据以及专利申请文本的同时也很新颖:通过提供每个应用程序的元数据及其所有文本字段,数据集使研究人员能够执行一组新的NLP任务,以利用结构性协变量的变异。作为有关HUPD的研究类型的案例研究,我们向NLP社区(即专利决策的二元分类)介绍了一项新任务。我们还显示数据集中提供的结构化元数据使我们能够对此任务进行概念转移的明确研究。最后,我们演示了如何将HUPD用于三个其他任务:专利主题领域的多类分类,语言建模和摘要。
translated by 谷歌翻译
机器学习(ML)涵盖的实验必须考虑评估模型性能的两个重要方面:数据集和算法。需要强大的基准来评估最佳分类器。为此,可以采用公共存储库中提供的金标准基准。但是,常常不考虑在评估时考虑数据集的复杂性。这项工作提出了一种基于物品响应理论(IRT)和GLICKO-2的组合的新评估方法,该方法通常采用了评估参与者的强度(例如,国际象棋)。对于基准测试中的每个数据集,IRT用于估计分类器的能力,良好的分类器对最困难的测试实例具有良好的预测。然后为每对分类器运行锦标赛,以便GLICKO-2更新每个分类器等额定值,评级偏差和波动等性能信息。在此进行了一个案例研究,该研究通过了OpenML-CC18基准作为数据集的集合和各种分类算法的池进行评估。并非所有数据集都被观察到对评估算法非常有用,其中只有10%被认为是非常困难的。此外,验证了仅包含50%的OpenML-CC18的50%的子集的存在,其同样有用于算法评估。关于算法,本文提出的方法将随机林识别为具有最佳天生能力的算法。
translated by 谷歌翻译
标准化的数据集和基准刺激了计算机视觉,自然语言处理,多模式和表格设置的创新。我们注意到,与其他经过良好研究的领域相比,欺诈检测有许多差异。差异包括高级失衡,多样化的特征类型,经常改变的欺诈模式以及问题的对抗性。由于这些差异,用于其他分类任务的建模方法可能对欺诈检测效果不佳。我们介绍了欺诈数据集基准(FDB),该基准是针对欺诈检测的公开可用数据集的汇编。 FDB包括各种与欺诈相关的任务,从识别欺诈性卡片 - 不出现交易,检测机器人攻击,对恶意URL进行分类,预测贷款的风险降至内容适度。来自FDB的基于Python的库为数据加载提供了一致的API,并具有标准化的训练和测试拆分。作为参考,我们还提供了FDB上不同建模方法的基线评估。考虑到各种研究和业务问题的自动化机器学习(AUTOML)的日益普及,我们使用了Automl框架进行基线评估。为了预防欺诈,拥有有限资源和缺乏ML专业知识的组织通常会聘请一个调查人员,使用区块列表和手动规则,所有这些规则效率低下且规模不佳。这些组织可以从易于在生产中部署并通过欺诈预防要求的汽车解决方案受益。我们希望FDB有助于开发适合不同欺诈模式操作数(MOS)的定制欺诈检测技术,以及改善汽车系统,这些系统可以很好地适用于基准中的所有数据集。
translated by 谷歌翻译
异构表格数据是最常用的数据形式,对于众多关键和计算要求的应用程序至关重要。在同质数据集上,深度神经网络反复显示出卓越的性能,因此被广泛采用。但是,它们适应了推理或数据生成任务的表格数据仍然具有挑战性。为了促进该领域的进一步进展,这项工作概述了表格数据的最新深度学习方法。我们将这些方法分为三组:数据转换,专业体系结构和正则化模型。对于每个小组,我们的工作提供了主要方法的全面概述。此外,我们讨论了生成表格数据的深度学习方法,并且还提供了有关解释对表格数据的深层模型的策略的概述。因此,我们的第一个贡献是解决上述领域中的主要研究流和现有方法,同时强调相关的挑战和开放研究问题。我们的第二个贡献是在传统的机器学习方法中提供经验比较,并在五个流行的现实世界中的十种深度学习方法中,具有不同规模和不同的学习目标的经验比较。我们已将作为竞争性基准公开提供的结果表明,基于梯度增强的树合奏的算法仍然大多在监督学习任务上超过了深度学习模型,这表明对表格数据的竞争性深度学习模型的研究进度停滞不前。据我们所知,这是对表格数据深度学习方法的第一个深入概述。因此,这项工作可以成为有价值的起点,以指导对使用表格数据深入学习感兴趣的研究人员和从业人员。
translated by 谷歌翻译
培训和评估语言模型越来越多地要求构建元数据 - 多样化的策划数据收集,并具有清晰的出处。自然语言提示最近通过将现有的,有监督的数据集转换为多种新颖的预处理任务,突出了元数据策划的好处,从而改善了零击的概括。尽管将这些以数据为中心的方法转化为生物医学语言建模的通用域文本成功,但由于标记的生物医学数据集在流行的数据中心中的代表性大大不足,因此仍然具有挑战性。为了应对这一挑战,我们介绍了BigBio一个由126个以上的生物医学NLP数据集的社区库,目前涵盖12个任务类别和10多种语言。 BigBio通过对数据集及其元数据进行程序化访问来促进可再现的元数据策划,并与当前的平台兼容,以及时工程和端到端的几个/零射击语言模型评估。我们讨论了我们的任务架构协调,数据审核,贡献指南的过程,并概述了两个说明性用例:生物医学提示和大规模,多任务学习的零射门评估。 BigBio是一项持续的社区努力,可在https://github.com/bigscience-workshop/biomedical上获得。
translated by 谷歌翻译
为了实现峰值预测性能,封路计优化(HPO)是机器学习的重要组成部分及其应用。在过去几年中,HPO的有效算法和工具的数量大幅增加。与此同时,社区仍缺乏现实,多样化,计算廉价和标准化的基准。这是多保真HPO方法的情况。为了缩短这个差距,我们提出了HPoBench,其中包括7个现有和5个新的基准家庭,共有100多个多保真基准问题。 HPobench允许以可重复的方式运行该可扩展的多保真HPO基准,通过隔离和包装容器中的各个基准。它还提供了用于计算实惠且统计数据的评估的代理和表格基准。为了展示HPoBench与各种优化工具的广泛兼容性,以及其有用性,我们开展了一个来自6个优化工具的13个优化器的示例性大规模研究。我们在这里提供HPobench:https://github.com/automl/hpobench。
translated by 谷歌翻译
个体治疗效果(ITE)预测是机器学习的重要研究领域,其目的在解释和估算粒状水平时的作用的因果影响。它代表了对诸如医疗保健,在线广告或社会经济学的多个申请兴趣的问题。为了促进本主题的研究,我们释放了从几个随机控制试验中收集的1390万个样本的公开收集,通过健康的210倍因素扩展先前可用的数据集。我们提供有关数据收集的详细信息,并执行Sanity检查以验证使用此数据是否有因果推理任务。首先,我们正规化可以使用此数据执行的隆起建模(UM)的任务以及相关的评估指标。然后,我们提出了为ITE预测提供了一般设置的合成响应表面和异质处理分配。最后,我们报告实验以验证利用其大小的数据集的关键特性,以评估和比较 - 具有高统计显着性 - 基线UM和ITE预测方法的选择。
translated by 谷歌翻译
近年来,随着传感器和智能设备的广泛传播,物联网(IoT)系统的数据生成速度已大大增加。在物联网系统中,必须经常处理,转换和分析大量数据,以实现各种物联网服务和功能。机器学习(ML)方法已显示出其物联网数据分析的能力。但是,将ML模型应用于物联网数据分析任务仍然面临许多困难和挑战,特别是有效的模型选择,设计/调整和更新,这给经验丰富的数据科学家带来了巨大的需求。此外,物联网数据的动态性质可能引入概念漂移问题,从而导致模型性能降解。为了减少人类的努力,自动化机器学习(AUTOML)已成为一个流行的领域,旨在自动选择,构建,调整和更新机器学习模型,以在指定任务上实现最佳性能。在本文中,我们对Automl区域中模型选择,调整和更新过程中的现有方法进行了审查,以识别和总结将ML算法应用于IoT数据分析的每个步骤的最佳解决方案。为了证明我们的发现并帮助工业用户和研究人员更好地实施汽车方法,在这项工作中提出了将汽车应用于IoT异常检测问题的案例研究。最后,我们讨论并分类了该领域的挑战和研究方向。
translated by 谷歌翻译
我们考虑使用自动监督学习系统的数据表,不仅包含数字/分类列,而且还包含一个或多个文本字段。在这里,我们组装了18个多模式数据表,每个数据表都包含一些文本字段并源于真正的业务应用程序。我们的公开的基准使研究人员能够通过数字,分类和文本功能全面评估自己的监督学习方法。为了确保在所有18个数据集上执行良好的任何单一建模策略将作为多式化文本/表格自动机的实用基础,我们的基准中的不同数据集在:样本大小,问题类型(分类和回归任务组合),功能数量(数据集之间的文本列的数量范围为1到28),以及预测信号如何在文本与数字/分类特征(以及预测相互作用)之间分解。在此基准测试中,我们评估各种直接的流水线来模拟这些数据,包括标准的两阶段方法,其中NLP用于团体化文本,然后可以应用表格数据的自动机。与人类数据科学团队相比,在我们的基准测试(堆叠与各种树模型的堆栈组合多峰变压器的堆栈)的全自动方法也可以在两个机器预测竞赛中符合原始文本/表格数据和第二次在卡格的Mercari价格建议挑战中的地方(2380支球队)。
translated by 谷歌翻译
自动化机器学习(Automl)努力自动配置机器学习算法及其组合的整体(软件)解决方案 - 机器学习管道 - 针对手头的学习任务(数据集)量身定制。在过去十年中,Automl已成为具有数百个贡献的热门研究课题。虽然Automl提供了许多前景,但也称它也是相当资源密集的,这是其主要批评的主要观点之一。高资源消耗的主要原因是许多方法依赖于许多ML管道的(昂贵)评估,同时寻找良好的候选者。由于使用许多数据集和方法进行了大规模实验,因此在Automl方法研究的背景下放大了这个问题,每个数据都是用几种重复来排除随机效应的几个重复的实验。本文阐述了最近的绿色AI的精神,是为了提高对问题的自动化研究人员的意识,并详细阐述可能的补救措施。为此,我们确定了四类行动,社区可能采取更加可持续的自动化计划,即接近设计,基准,研究激励和透明度。
translated by 谷歌翻译