在本文中,我们将$ \ textit {开放设定识别} $与域移动一起研究,最终目标是实现$ \ textit {无源的通用域apation} $(sf-unda),以解决以下情况源和目标域之间存在域和类别变化。在SF-UNDA设置下,该模型在目标适应过程中无法再访问源数据,旨在解决数据隐私问题。我们提出了一种新颖的培训计划,以学习($ n $+1) - 道路分类器,以预测$ n $源类和未知类别,其中仅可用于培训的样本。此外,对于目标适应,我们简单地采用了加权熵最小化,以使源预处理的模型适应未标记的目标域而没有源数据。在实验中,我们显示了:$ \ textbf {1)} $在源培训后,生成的源模型可以获得$ \ textit {开放设定单域概括} $以及$ \ textit {开放设定{open-Set识别}的出色性能$任务; $ \ textbf {2)} $在目标适应后,我们的方法超过了当前的UNDA方法,这些方法在几个基准上的适应过程中需要源数据。对几个不同任务的多功能性强烈证明了我们方法的功效和概括能力。 $ \ textbf {3)} $在目标适应过程中使用封闭设置的域适应方法增强时,我们的无源方法进一步超过了当前的最新unda方法,将当前的方法提高2.5%,7.2%和13% Office-31,办公室和Visda。代码将在https://github.com/albert0147/onering中提供。
translated by 谷歌翻译
学习目标域中的未知样本(不存在于源类中)对于无监督域适应(UDA)相当重要。存在两个典型的UDA方案,即开放式和开放式集合,后者假定目标域中并非所有源类都显示在内。但是,大多数先前的方法都是为一个UDA场景而设计的,并且始终在其他UDA方案上表现差。此外,它们还需要在适应过程中标记的源数据,限制其在数据隐私敏感应用中的可用性。为了解决这些问题,本文提出了一种通用模型适应(UMAD)框架,其处理了UDA方案,而无需访问源数据,也不是关于域之间类别的类别的知识。具体而言,我们的目标是使用优雅设计的双头分类器来学习源模型,并将其提供给目标域。在适应期间,我们开发了一种信息丰富的一致性分数,以帮助区分从已知样品中的未知样本。为了在目标域中实现双边适应,我们进一步最大化了局部化的相互信息,以将已知的样本与源分类器对齐,并采用熵丢失,以便分别推动远离源分类边界的未知样本。开放式和开放式的UDA方案的实验表明,umad作为无需访问源数据的统一方法,展示与最先进的数据相关方法的可比性。
translated by 谷歌翻译
Universal Domain Adaptation aims to transfer the knowledge between the datasets by handling two shifts: domain-shift and category-shift. The main challenge is correctly distinguishing the unknown target samples while adapting the distribution of known class knowledge from source to target. Most existing methods approach this problem by first training the target adapted known classifier and then relying on the single threshold to distinguish unknown target samples. However, this simple threshold-based approach prevents the model from considering the underlying complexities existing between the known and unknown samples in the high-dimensional feature space. In this paper, we propose a new approach in which we use two sets of feature points, namely dual Classifiers for Prototypes and Reciprocals (CPR). Our key idea is to associate each prototype with corresponding known class features while pushing the reciprocals apart from these prototypes to locate them in the potential unknown feature space. The target samples are then classified as unknown if they fall near any reciprocals at test time. To successfully train our framework, we collect the partial, confident target samples that are classified as known or unknown through on our proposed multi-criteria selection. We then additionally apply the entropy loss regularization to them. For further adaptation, we also apply standard consistency regularization that matches the predictions of two different views of the input to make more compact target feature space. We evaluate our proposal, CPR, on three standard benchmarks and achieve comparable or new state-of-the-art results. We also provide extensive ablation experiments to verify our main design choices in our framework.
translated by 谷歌翻译
域适应(DA)旨在缓解源域和目标域之间的域移位。大多数DA方法都需要访问源数据,但通常是不可能的(例如,由于数据隐私或知识产权)。在本文中,我们解决了挑战的无源域适应(SFDA)问题,其中源净定模型在没有源数据的情况下适应目标域。我们的方法基于目标数据的观察,该数据可能不再与源域分类器对齐,仍然形成清晰的群集。我们通过定义目标数据的本地亲和力来捕获此内在结构,并鼓励具有高局部亲和力的数据之间的标签一致性。我们观察到应将更高的亲和力分配给互惠邻居,并提出自正规化损失以减少嘈杂邻居的负面影响。此外,要使用更多上下文聚合信息,我们考虑扩展的邻域,具有小关联值。在实验结果中,我们验证了目标特征的固有结构是域适应的重要信息来源。我们证明可以通过考虑本地邻居,互易邻居和扩展的邻域来有效地捕获该局部结构。最后,我们在几个2D图像和3D点云识别数据集中实现最先进的性能。代码是在https://github.com/albert0147/sfda_neighbors中获得的。
translated by 谷歌翻译
通用域适应性(UNIDA)是一种一般无监督的域适应设置,它解决了自适应中的域和标签变化。它的主要挑战在于如何在未共享或未知类中识别目标样本。以前的方法通常努力描绘样本“置信度”以及拒绝未知数的阈值,并使跨域共享类的特征分布对齐。但是,仍然很难预先指定“信心”标准和阈值,这些标准和阈值适应各种实际任务,并且对未知数的错误预测进一步导致了共享类中特征的错误对准。在本文中,我们提出了一种新的UNIDA方法,该方法具有分类器悖论(UACP)的自适应未知身份验证,考虑到具有矛盾预测的样品可能是未知的,属于源类别。在UACP中,一个复合分类器与两种类型的预测变量共同设计。也就是说,多类(MC)预测器将样品分类为多个源类之一,而二进制单VS-ALL(OVA)预测器进一步验证了MC预测器的预测。验证失败或悖论的样品被鉴定为未知数。此外,在输出空间中进行了隐式域对齐,而不是共享类别的特征对齐,使跨域的样本共享相同的决策边界,尽管特征差异都具有相同的决策边界。经验结果验证了开放式UDA和通用UDA设置下的UACP。
translated by 谷歌翻译
无监督的域适应性(DA)中的主要挑战是减轻源域和目标域之间的域移动。先前的DA工作表明,可以使用借口任务来通过学习域不变表示来减轻此域的转移。但是,实际上,我们发现大多数现有的借口任务对其他已建立的技术无效。因此,我们从理论上分析了如何以及何时可以利用子公司借口任务来协助给定DA问题的目标任务并制定客观的子公司任务适用性标准。基于此标准,我们设计了一个新颖的贴纸干预过程和铸造贴纸分类的过程,作为监督的子公司DA问题,该问题与目标任务无监督的DA同时发生。我们的方法不仅改善了目标任务适应性能,而且还促进了面向隐私的无源DA,即没有并发源目标访问。标准Office-31,Office-Home,Domainnet和Visda基准的实验证明了我们对单源和多源无源DA的优势。我们的方法还补充了现有的无源作品,从而实现了领先的绩效。
translated by 谷歌翻译
本文研究了一个新的,实用但具有挑战性的问题,称为类无监督的域名适应性(CI-UDA),其中标记的源域包含所有类别,但是未标记的目标域中的类别依次增加。由于两个困难,这个问题具有挑战性。首先,源和目标标签集在每个时间步骤都不一致,这使得很难进行准确的域对齐。其次,以前的目标类在当前步骤中不可用,从而忘记了先前的知识。为了解决这个问题,我们提出了一种新型的原型引导连续适应(PROCA)方法,由两种解决方案策略组成。 1)标签原型识别:我们通过检测具有目标样本的累积预测概率的共享类来识别目标标签原型。 2)基于原型的对齐和重播:基于确定的标签原型,我们对齐域并强制执行模型以保留先前的知识。有了这两种策略,ProCA能够有效地将源模型改编为类未标记的目标域。广泛的实验证明了Proca在解决CI-UDA方面的有效性和优势。源代码可从https://github.com/hongbin98/proca.git获得
translated by 谷歌翻译
无监督域适应(UDA)旨在将知识从相关但不同的良好标记的源域转移到新的未标记的目标域。大多数现有的UDA方法需要访问源数据,因此当数据保密而不相配在隐私问题时,不适用。本文旨在仅使用培训的分类模型来解决现实设置,而不是访问源数据。为了有效地利用适应源模型,我们提出了一种新颖的方法,称为源假设转移(拍摄),其通过将目标数据特征拟合到冻结源分类模块(表示分类假设)来学习目标域的特征提取模块。具体而言,拍摄挖掘出于特征提取模块的信息最大化和自我监督学习,以确保目标特征通过同一假设与看不见的源数据的特征隐式对齐。此外,我们提出了一种新的标签转移策略,它基于预测的置信度(标签信息),然后采用半监督学习来将目标数据分成两个分裂,然后提高目标域中的较为自信预测的准确性。如果通过拍摄获得预测,我们表示标记转移为拍摄++。关于两位数分类和对象识别任务的广泛实验表明,拍摄和射击++实现了与最先进的结果超越或相当的结果,展示了我们对各种视域适应问题的方法的有效性。代码可用于\ url {https://github.com/tim-learn/shot-plus}。
translated by 谷歌翻译
作为对数据有效使用的研究,多源无监督的域适应性将知识从带有标记数据的多个源域转移到了未标记的目标域。但是,目标域中不同域和嘈杂的伪标签之间的分布差异都导致多源无监督域适应方法的性能瓶颈。鉴于此,我们提出了一种将注意力驱动的领域融合和耐噪声学习(ADNT)整合到上述两个问题的方法。首先,我们建立了相反的注意结构,以在特征和诱导域运动之间执行信息。通过这种方法,当域差异降低时,特征的可区分性也可以显着提高。其次,基于无监督的域适应训练的特征,我们设计了自适应的反向横向熵损失,该损失可以直接对伪标签的产生施加约束。最后,结合了这两种方法,几个基准的实验结果进一步验证了我们提出的ADNT的有效性,并证明了优于最新方法的性能。
translated by 谷歌翻译
通用域的适应性(UDA)旨在将公共类的知识从源域转移到目标域,而无需对标签集的任何先验知识,这需要将未知样本与目标域中的已知样本区分开。最近的方法更喜欢增加已知类别中样本间亲和力,而它们忽略了未知样本与已知样本之间的样本间亲和力。本文表明,利用这种样本间亲和力可以显着提高UDA的性能,并提出基于IT的知识性UDA框架。首先,我们通过在源域中搜索其相邻样本来估计每个目标样本的可知性。然后,我们提出了一种适用于估计的可知性的自动阈值方案,以确定目标样本是未知还是已知。接下来,除了增加每个已知类别的样本间亲和力(如先前的方法)外,我们还根据估计的可知性设计新损失,以减少未知目标样本与已知目标样本之间的样本间亲和力。最后,在四个公共数据集上的实验表明,我们的方法显着胜过现有的最新方法。
translated by 谷歌翻译
开放型域适应(OSDA)假设目标域包含未知类,这些类未在源域中发现。现有的域对抗学习方法不适合OSDA,因为与\ textit {Unknown}类匹配的分布会导致负转移。以前的OSDA方法仅通过使用\ textit {已知}类而着重于匹配源和目标分布。但是,此\ textit {已知} - 仅匹配可能无法学习目标 - \ textit {unknown}特征空间。因此,我们提出了不知名的域对抗学习(uadal),\ textit {aligns} source and targe- \ textit {已知{已知{已知{已知{已知{功能对齐过程。我们提供了有关提出的\ textIt {unknown-ware}特征对齐的优化状态的理论分析,因此我们可以保证\ textit {Alignment}和\ textit {segregation}理论上。从经验上讲,我们在基准数据集上评估了Uadal,该数据集表明Uadal通过报告最先进的性能来优于其他具有更好特征对齐方式的方法。
translated by 谷歌翻译
很少有射击学习(FSL)旨在通过利用基本数据集的先验知识来识别只有几个支持样本的新奇查询。在本文中,我们考虑了FSL中的域移位问题,并旨在解决支持集和查询集之间的域间隙。不同于以前考虑基础和新颖类之间的域移位的跨域FSL工作(CD-FSL),新问题称为跨域跨集FSL(CDSC-FSL),不仅需要很少的学习者适应新的领域,但也要在每个新颖类中的不同领域之间保持一致。为此,我们提出了一种新颖的方法,即Stabpa,学习原型紧凑和跨域对准表示,以便可以同时解决域的转移和很少的学习学习。我们对分别从域和办公室数据集构建的两个新的CDCS-FSL基准进行评估。值得注意的是,我们的方法的表现优于多个详细的基线,例如,在域内,将5-shot精度提高了6.0点。代码可从https://github.com/wentaochen0813/cdcs-fsl获得
translated by 谷歌翻译
无源域的适应(SFDA)旨在将预先培训的源模型调整到未标记的目标域而无需访问标记良好的源数据的情况下,由于数据隐私,安全性和传输问题,这是一个更实用的设置。为了弥补缺乏源数据,大多数现有方法引入了基于特征原型的伪标记策略,以实现自我训练模型的适应性。但是,特征原型是通过基于实例级预测的特征群集获得的,该特征群集是偏见的,并且倾向于导致嘈杂的标签,因为源和目标之间的视觉域间隙通常不同。此外,我们发现单中心特征原型可能无效地表示每个类别并引入负转移,尤其是对于这些硬转移数据。为了解决这些问题,我们为SFDA任务提供了一般类平衡的多中心动态原型(BMD)策略。具体而言,对于每个目标类别,我们首先引入全球类间平衡抽样策略,以汇总潜在的代表性目标样本。然后,我们设计了一类多中心聚类策略,以实现更健壮和代表性的原型生成。与在固定培训期更新伪标签的现有策略相反,我们进一步引入了动态伪标签策略,以在模型适应过程中结合网络更新信息。广泛的实验表明,所提出的模型不可替代的BMD策略显着改善了代表性的SFDA方法,以产生新的最新结果。该代码可在https://github.com/ispc-lab/bmd上找到。
translated by 谷歌翻译
域的概括(DG)旨在在一个或多个不同但相关的源域上学习一个模型,这些模型可以推广到看不见的目标域。现有的DG方法试图提示模型的概括能力的源域的多样性,同时他们可能必须引入辅助网络或达到计算成本。相反,这项工作应用了特征空间中的隐式语义增强来捕获源域的多样性。具体来说,包括距离度量学习(DML)的附加损失函数,以优化数据分布的局部几何形状。此外,采用跨熵损失的逻辑被无限增强作为DML损失的输入特征,以代替深度特征。我们还提供了理论分析,以表明逻辑可以近似于原始特征上定义的距离。此外,我们对方法背后的机制和理性进行了深入的分析,这使我们可以更好地了解为什么要代替特征的杠杆逻辑可以帮助域的概括。拟议的DML损失与隐式增强作用纳入了最近的DG方法中,即傅立叶增强联合老师框架(FACT)。同时,我们的方法也可以轻松地插入各种DG方法中。对三个基准测试(Digits-DG,PAC和办公室家庭)进行的广泛实验表明,该建议的方法能够实现最新的性能。
translated by 谷歌翻译
通过从完全标记的源域中利用数据,无监督域适应(UDA)通过显式差异最小化数据分布或对抗学习来提高未标记的目标域上的分类性能。作为增强,通过利用模型预测来加强目标特征识别期间涉及类别对齐。但是,在目标域上的错误类别预测中产生的伪标签不准确以及由源域的过度录制引起的分发偏差存在未探明的问题。在本文中,我们提出了一种模型 - 不可知的两阶段学习框架,这大大减少了使用软伪标签策略的缺陷模型预测,并避免了课程学习策略的源域上的过度拟合。从理论上讲,它成功降低了目标域上预期误差的上限的综合风险。在第一阶段,我们用分布对齐的UDA方法训练一个模型,以获得具有相当高的置位目标域上的软语义标签。为了避免在源域上的过度拟合,在第二阶段,我们提出了一种课程学习策略,以自适应地控制来自两个域的损失之间的加权,以便训练阶段的焦点从源分布逐渐移位到目标分布,以预测信心提升了目标分布在目标领域。对两个知名基准数据集的广泛实验验证了我们提出框架促进促进顶级UDA算法的性能的普遍效果,并展示其一致的卓越性能。
translated by 谷歌翻译
半监督域适应(SSDA)是一种具有挑战性的问题,需要克服1)以朝向域的较差的数据和2)分布换档的方法。不幸的是,由于培训数据偏差朝标标样本训练,域适应(DA)和半监督学习(SSL)方法的简单组合通常无法解决这两个目的。在本文中,我们介绍了一种自适应结构学习方法,以规范SSL和DA的合作。灵感来自多视图学习,我们建议的框架由共享特征编码器网络和两个分类器网络组成,用于涉及矛盾的目的。其中,其中一个分类器被应用于组目标特征以提高级别的密度,扩大了鲁棒代表学习的分类集群的间隙。同时,其他分类器作为符号器,试图散射源功能以增强决策边界的平滑度。目标聚类和源扩展的迭代使目标特征成为相应源点的扩张边界内的封闭良好。对于跨域特征对齐和部分标记的数据学习的联合地址,我们应用最大平均差异(MMD)距离最小化和自培训(ST)将矛盾结构投影成共享视图以进行可靠的最终决定。对标准SSDA基准的实验结果包括Domainnet和Office-Home,展示了我们对最先进的方法的方法的准确性和稳健性。
translated by 谷歌翻译
Source-free domain adaptation aims to adapt a source model trained on fully-labeled source domain data to a target domain with unlabeled target domain data. Source data is assumed inaccessible due to proprietary or privacy reasons. Existing works use the source model to pseudolabel target data, but the pseudolabels are unreliable due to data distribution shift between source and target domain. In this work, we propose to leverage an ImageNet pre-trained feature extractor in a new co-learning framework to improve target pseudolabel quality for finetuning the source model. Benefits of the ImageNet feature extractor include that it is not source-biased and it provides an alternate view of features and classification decisions different from the source model. Such pre-trained feature extractors are also publicly available, which allows us to readily leverage modern network architectures that have strong representation learning ability. After co-learning, we sharpen predictions of non-pseudolabeled samples by entropy minimization. Evaluation on 3 benchmark datasets show that our proposed method can outperform existing source-free domain adaptation methods, as well as unsupervised domain adaptation methods which assume joint access to source and target data.
translated by 谷歌翻译
Unsupervised domain adaptation (UDA) aims to leverage the knowledge learned from a labeled source dataset to solve similar tasks in a new unlabeled domain. Prior UDA methods typically require to access the source data when learning to adapt the model, making them risky and inefficient for decentralized private data. This work tackles a practical setting where only a trained source model is available and investigates how we can effectively utilize such a model without source data to solve UDA problems. We propose a simple yet generic representation learning framework, named Source HypOthesis Transfer (SHOT). SHOT freezes the classifier module (hypothesis) of the source model and learns the target-specific feature extraction module by exploiting both information maximization and selfsupervised pseudo-labeling to implicitly align representations from the target domains to the source hypothesis. To verify its versatility, we evaluate SHOT in a variety of adaptation cases including closed-set, partial-set, and open-set domain adaptation. Experiments indicate that SHOT yields state-of-the-art results among multiple domain adaptation benchmarks.
translated by 谷歌翻译
当部署和培训之间存在分配变化时,深层神经网络的性能恶化严重。域的概括(DG)旨在通过仅依靠一组源域来安全地传输模型以看不见目标域。尽管已经提出了各种DG方法,但最近的一项名为Domainbed的研究表明,其中大多数没有超过简单的经验风险最小化(ERM)。为此,我们提出了一个通用框架,该框架与现有的DG算法是正交的,并且可以始终如一地提高其性能。与以前的DG作品不同的是,在静态源模型上有希望成为通用的DG,我们提出的ADAODM会在测试时间适应不同目标域的源模型。具体而言,我们在共享域形式的特征提取器上创建多个域特异性分类器。特征提取器和分类器以对抗性方式进行了训练,其中特征提取器将输入样品嵌入到域不变的空间中,并且多个分类器捕获了每个分类器与特定源域有关的独特决策边界。在测试过程中,可以通过利用源分类器之间的预测分歧来有效地衡量目标和源域之间的分布差异。通过微调源模型以最大程度地减少测试时间的分歧,目标域特征与不变特征空间很好地对齐。我们验证了两种流行的DG方法,即ERM和Coral,以及四个DG基准,即VLCS,PACS,OfficeHome和TerrainCognita。结果表明,ADAODM稳定地提高了对看不见的域的概括能力,并实现了最先进的性能。
translated by 谷歌翻译
域适应(DA)旨在将知识从标签富裕但异构的域转移到标签恐慌域,这减轻了标签努力并吸引了相当大的关注。与以前的方法不同,重点是学习域中的特征表示,一些最近的方法存在通用半监督学习(SSL)技术,直接将它们应用于DA任务,甚至实现竞争性能。最受欢迎的SSL技术之一是伪标记,可通过标记数据训练的分类器为每个未标记数据分配伪标签。但是,它忽略了DA问题的分布偏移,并且不可避免地偏置为源数据。要解决此问题,我们提出了一个名为辅助目标域导向的分类器(ATDOC)的新伪标签框架。 ATDOC通过为目标数据引入辅助分类器来缓解分类器偏置,以提高伪标签的质量。具体地,我们使用内存机制并开发两种类型的非参数分类器,即最近的质心分类器和邻域聚合,而不引入任何其他网络参数。尽管在伪分类目标中具有简单性,但具有邻域聚集的ATDOC显着优于域对齐技术和现有的SSL技术,以及甚至瘢痕标记的SSL任务。
translated by 谷歌翻译