深度学习模式在许多分类任务中取得了最先进的性能。但是,大多数人不能为其分类结果提供解释。可解释的机器学习模型通常是线性的或分段线性和产生较差的性能。非线性模型实现了更好的分类性能,但很难解释他们的分类结果。这可能已经通过提出的可解释的前馈神经网络(IFFNN)来改变,这提出了实现高分类性能和恶意软件检测的可解释性。如果IFFNN可以在提供有意义的解释的同时以更灵活和一般的形式表现良好,并且在提供有意义的解释时,它可能对所应用的机器学习界非常感兴趣。在本文中,我们提出了一种方式来概括可解释的前馈神经网络到多级分类场景和任何类型的前馈神经网络,并评估其在内部解释数据集上的分类性能和解释性。我们通过发现广义IFFNNS实现了与正常前馈神经网络对应物的可比分类性能并提供了有意义的解释。因此,这种神经网络架构具有很大的实用性。
translated by 谷歌翻译
量子多体系统的状态是在高维的希尔伯特空间中定义的,可以对子系统之间的丰富而复杂的相互作用进行建模。在机器学习中,复杂的多个多线性相关性也可能存在于输入功能中。在本文中,我们提出了一个量子启发的多线性模型,称为残留张量列(RESTT),以捕获单个模型中从低阶到高阶的特征的多次多线性相关性。 RESTT能够在高维空间中建立强大的决策边界,以解决拟合和分类任务。特别是,我们证明了完全连接的层和Volterra系列可以将其视为特殊情况。此外,我们得出了根据平均场分析来稳定RESTT训练的权重初始化规则。我们证明,这样的规则比TT的规则放松得多,这意味着休息可以轻松解决现有TT模型中存在的消失和爆炸梯度问题。数值实验表明,RESTT的表现优于最先进的张量网络,并在MNIST和时尚MNIST数据集上进行基准深度学习模型。此外,RESTT在两个实践示例上的统计方法比其他有限数据的统计方法更好,这些方法具有复杂的功能相互作用。
translated by 谷歌翻译
手写数字识别(HDR)是光学特征识别(OCR)领域中最具挑战性的任务之一。不管语言如何,HDR都存在一些固有的挑战,这主要是由于个人跨个人的写作风格的变化,编写媒介和环境的变化,无法在反复编写任何数字等时保持相同的笔触。除此之外,特定语言数字的结构复杂性可能会导致HDR的模棱两可。多年来,研究人员开发了许多离线和在线HDR管道,其中不同的图像处理技术与传统的机器学习(ML)基于基于的和/或基于深度学习(DL)的体系结构相结合。尽管文献中存在有关HDR的广泛审查研究的证据,例如:英语,阿拉伯语,印度,法尔西,中文等,但几乎没有对孟加拉人HDR(BHDR)的调查,这缺乏对孟加拉语HDR(BHDR)的研究,而这些调查缺乏对孟加拉语HDR(BHDR)的研究。挑战,基础识别过程以及可能的未来方向。在本文中,已经分析了孟加拉语手写数字的特征和固有的歧义,以及二十年来最先进的数据集的全面见解和离线BHDR的方法。此外,还详细讨论了一些涉及BHDR的现实应用特定研究。本文还将作为对离线BHDR背后科学感兴趣的研究人员的汇编,煽动了对相关研究的新途径的探索,这可能会进一步导致在不同应用领域对孟加拉语手写数字进行更好的离线认识。
translated by 谷歌翻译
解释性成为在批判性方案中部署的机器学习模型的必要功能,例如,法律制度,医疗保健。在这些情况下,算法决策可能具有(潜在负面)对受决策影响的最终用户的持久影响。在许多情况下,不需要深度学习模型的代表性,因此应该优选简单和可解释的模型(例如线性模型)。然而,在高维和/或复杂的域(例如计算机视觉)中,需要神经网络的普遍近似能力。灵感来自线性模型和Kolmogorov-Arnold表示定理,我们提出了一种新颖的一类结构受限的神经网络,我们呼叫FLANS(特征 - 明智的附加网络)。粗略地,FLANS分别处理每个输入特征,为它们中的每一个计算共同潜在空间中的表示。然后简单地求和这些特征明智的表示,并且聚合表示用于预测。这些约束(在线性模型的解释性的核心)允许用户独立于其他特征来估计每个特征的效果,增强解释性。在不同领域的一组实验中,我们展示了如何在不妥协的情况下进行测试性能,弗拉斯提出的结构约束确实有助于深入学习模型的可解释性。我们通过最近引入的指标定量比较氟玻璃对后HOC方法的可解释性,讨论了在HOC分析后本地可解释模型的优势。
translated by 谷歌翻译
一方面,人工神经网络(ANNS)通常被标记为黑匣子,缺乏可解释性;阻碍了人类对ANNS行为的理解的问题。存在需要生成ANN的有意义的顺序逻辑,用于解释特定输出的生产过程。另一方面,决策树由于它们的代表语言和有效算法的存在而导致更好的可解释性和表现力,以将树木转化为规则。然而,基于可用数据生长决策树可能会产生大于不概括的必要树木或树木。在本文中,我们介绍了来自ANN的规则提取的两种新的多变量决策树(MDT)算法:精确可转换决策树(EC-DT)和扩展的C-NET算法。它们都将纠正的线性单元激活函数转换为代表树的神经网络,这可以进一步用于提取多元规则以进行推理。虽然EC-DT以层式方式转换ANN以表示由网络的隐藏层内隐式学习的决策边界,但扩展的C-Net将来自EC-DT的分解方法与C5树学习算法相结合形成决策规则。结果表明,虽然EC-DT在保持结构和ANN的保真度方面优越,但扩展的C-Net产生了来自ANN的最紧凑且高效的树木。两者都建议的MDT算法生成规则,包括多个属性的组合,以便决策的精确解释。
translated by 谷歌翻译
神经网络(NNS)和决策树(DTS)都是机器学习的流行模型,但具有相互排斥的优势和局限性。为了带来两个世界中的最好,提出了各种方法来明确或隐式地集成NN和DTS。在这项调查中,这些方法是在我们称为神经树(NTS)的学校中组织的。这项调查旨在对NTS进行全面审查,并尝试确定它们如何增强模型的解释性。我们首先提出了NTS的彻底分类学,该分类法表达了NNS和DTS的逐步整合和共同进化。之后,我们根据NTS的解释性和绩效分析,并建议解决其余挑战的可能解决方案。最后,这项调查以讨论有条件计算和向该领域的有希望的方向进行讨论结束。该调查中审查的论文列表及其相应的代码可在以下网址获得:https://github.com/zju-vipa/awesome-neural-trees
translated by 谷歌翻译
众所周知,端到端的神经NLP体系结构很难理解,这引起了近年来为解释性建模的许多努力。模型解释的基本原则是忠诚,即,解释应准确地代表模型预测背后的推理过程。这项调查首先讨论了忠诚的定义和评估及其对解释性的意义。然后,我们通过将方法分为五类来介绍忠实解释的最新进展:相似性方法,模型内部结构的分析,基于反向传播的方法,反事实干预和自我解释模型。每个类别将通过其代表性研究,优势和缺点来说明。最后,我们从它们的共同美德和局限性方面讨论了上述所有方法,并反思未来的工作方向忠实的解释性。对于有兴趣研究可解释性的研究人员,这项调查将为该领域提供可访问且全面的概述,为进一步探索提供基础。对于希望更好地了解自己的模型的用户,该调查将是一项介绍性手册,帮助选择最合适的解释方法。
translated by 谷歌翻译
超参数优化构成了典型的现代机器学习工作流程的很大一部分。这是由于这样一个事实,即机器学习方法和相应的预处理步骤通常只有在正确调整超参数时就会产生最佳性能。但是在许多应用中,我们不仅有兴趣仅仅为了预测精度而优化ML管道;确定最佳配置时,必须考虑其他指标或约束,从而导致多目标优化问题。由于缺乏知识和用于多目标超参数优化的知识和容易获得的软件实现,因此通常在实践中被忽略。在这项工作中,我们向读者介绍了多个客观超参数优化的基础知识,并激励其在应用ML中的实用性。此外,我们从进化算法和贝叶斯优化的领域提供了现有优化策略的广泛调查。我们说明了MOO在几个特定ML应用中的实用性,考虑了诸如操作条件,预测时间,稀疏,公平,可解释性和鲁棒性之类的目标。
translated by 谷歌翻译
Automated Machine Learning-based systems' integration into a wide range of tasks has expanded as a result of their performance and speed. Although there are numerous advantages to employing ML-based systems, if they are not interpretable, they should not be used in critical, high-risk applications where human lives are at risk. To address this issue, researchers and businesses have been focusing on finding ways to improve the interpretability of complex ML systems, and several such methods have been developed. Indeed, there are so many developed techniques that it is difficult for practitioners to choose the best among them for their applications, even when using evaluation metrics. As a result, the demand for a selection tool, a meta-explanation technique based on a high-quality evaluation metric, is apparent. In this paper, we present a local meta-explanation technique which builds on top of the truthfulness metric, which is a faithfulness-based metric. We demonstrate the effectiveness of both the technique and the metric by concretely defining all the concepts and through experimentation.
translated by 谷歌翻译
In this study, we systematically investigate the impact of class imbalance on classification performance of convolutional neural networks (CNNs) and compare frequently used methods to address the issue. Class imbalance is a common problem that has been comprehensively studied in classical machine learning, yet very limited systematic research is available in the context of deep learning. In our study, we use three benchmark datasets of increasing complexity, MNIST, CIFAR-10 and ImageNet, to investigate the effects of imbalance on classification and perform an extensive comparison of several methods to address the issue: oversampling, undersampling, two-phase training, and thresholding that compensates for prior class probabilities. Our main evaluation metric is area under the receiver operating characteristic curve (ROC AUC) adjusted to multi-class tasks since overall accuracy metric is associated with notable difficulties in the context of imbalanced data. Based on results from our experiments we conclude that (i) the effect of class imbalance on classification performance is detrimental; (ii) the method of addressing class imbalance that emerged as dominant in almost all analyzed scenarios was oversampling; (iii) oversampling should be applied to the level that completely eliminates the imbalance, whereas the optimal undersampling ratio depends on the extent of imbalance; (iv) as opposed to some classical machine learning models, oversampling does not cause overfitting of CNNs; (v) thresholding should be applied to compensate for prior class probabilities when overall number of properly classified cases is of interest.
translated by 谷歌翻译
机器学习与服务(MLAAS)已成为广泛的范式,即使是通过例如,也是客户可用的最复杂的机器学习模型。一个按要求的原则。这使用户避免了数据收集,超参数调整和模型培训的耗时过程。但是,通过让客户访问(预测)模型,MLAAS提供商危害其知识产权,例如敏感培训数据,优化的超参数或学到的模型参数。对手可以仅使用预测标签创建模型的副本,并以(几乎)相同的行为。尽管已经描述了这种攻击的许多变体,但仅提出了零星的防御策略,以解决孤立的威胁。这增加了对模型窃取领域进行彻底系统化的必要性,以全面了解这些攻击是成功的原因,以及如何全面地捍卫它们。我们通过对模型窃取攻击,评估其性能以及探索不同设置中相应的防御技术来解决这一问题。我们为攻击和防御方法提出了分类法,并提供有关如何根据目标和可用资源选择正确的攻击或防御策略的准则。最后,我们分析了当前攻击策略使哪些防御能力降低。
translated by 谷歌翻译
我们考虑在无法访问网络培训数据(例如由于隐私或安全问题)的情况下为神经网络产生解释。最近,已经提出了$ \ Mathcal {i} $ - 网络是一种无样品后全球模型可解释性的方法,不需要访问培训数据。他们将解释作为机器学习任务,将网络表示(参数)映射到可解释功能的表示。在本文中,我们将$ \ Mathcal {i} $ - 网络框架扩展到标准和软决策树作为替代模型的情况。我们提出了相应的$ \ Mathcal {i} $ - 净输出层的合适决策树表示和设计。此外,我们通过在生成$ \ Mathcal {i} $ - NET的培训数据时考虑更现实的分布来制作适用于现实世界任务的NETS $ \ MATHCAL {I} $ - NETS。我们对传统的全球,事后解释性方法进行经验评估我们的方法,并表明当无法访问培训数据时,它可以取得优势。
translated by 谷歌翻译
Deep learning takes advantage of large datasets and computationally efficient training algorithms to outperform other approaches at various machine learning tasks. However, imperfections in the training phase of deep neural networks make them vulnerable to adversarial samples: inputs crafted by adversaries with the intent of causing deep neural networks to misclassify. In this work, we formalize the space of adversaries against deep neural networks (DNNs) and introduce a novel class of algorithms to craft adversarial samples based on a precise understanding of the mapping between inputs and outputs of DNNs. In an application to computer vision, we show that our algorithms can reliably produce samples correctly classified by human subjects but misclassified in specific targets by a DNN with a 97% adversarial success rate while only modifying on average 4.02% of the input features per sample. We then evaluate the vulnerability of different sample classes to adversarial perturbations by defining a hardness measure. Finally, we describe preliminary work outlining defenses against adversarial samples by defining a predictive measure of distance between a benign input and a target classification.
translated by 谷歌翻译
In the last years many accurate decision support systems have been constructed as black boxes, that is as systems that hide their internal logic to the user. This lack of explanation constitutes both a practical and an ethical issue. The literature reports many approaches aimed at overcoming this crucial weakness sometimes at the cost of scarifying accuracy for interpretability. The applications in which black box decision systems can be used are various, and each approach is typically developed to provide a solution for a specific problem and, as a consequence, delineating explicitly or implicitly its own definition of interpretability and explanation. The aim of this paper is to provide a classification of the main problems addressed in the literature with respect to the notion of explanation and the type of black box system. Given a problem definition, a black box type, and a desired explanation this survey should help the researcher to find the proposals more useful for his own work. The proposed classification of approaches to open black box models should also be useful for putting the many research open questions in perspective.
translated by 谷歌翻译
黑匣子模型仅为深度学习任务提供结果,并且缺乏有关如何获得这些结果的信息细节。在本文中,我们提出了一种通用理论,该理论定义了一种差异公差因子(VTF)来通过对特征的重要性进行排名并构建由基本模型和特征模型组成的新颖体系结构来解释神经网络的。创建了两个功能重要性排名方法和基于VTF的特征选择方法。提供了对合成,基准和真实数据集的详尽评估。
translated by 谷歌翻译
Time Series Classification (TSC) is an important and challenging problem in data mining. With the increase of time series data availability, hundreds of TSC algorithms have been proposed. Among these methods, only a few have considered Deep Neural Networks (DNNs) to perform this task. This is surprising as deep learning has seen very successful applications in the last years. DNNs have indeed revolutionized the field of computer vision especially with the advent of novel deeper architectures such as Residual and Convolutional Neural Networks. Apart from images, sequential data such as text and audio can also be processed with DNNs to reach state-of-the-art performance for document classification and speech recognition. In this article, we study the current state-ofthe-art performance of deep learning algorithms for TSC by presenting an empirical study of the most recent DNN architectures for TSC. We give an overview of the most successful deep learning applications in various time series domains under a unified taxonomy of DNNs for TSC. We also provide an open source deep learning framework to the TSC community where we implemented each of the compared approaches and evaluated them on a univariate TSC benchmark (the UCR/UEA archive) and 12 multivariate time series datasets. By training 8,730 deep learning models on 97 time series datasets, we propose the most exhaustive study of DNNs for TSC to date.
translated by 谷歌翻译
人工智能(AI)和机器学习(ML)在网络安全挑战中的应用已在行业和学术界的吸引力,部分原因是对关键系统(例如云基础架构和政府机构)的广泛恶意软件攻击。入侵检测系统(IDS)使用某些形式的AI,由于能够以高预测准确性处理大量数据,因此获得了广泛的采用。这些系统托管在组织网络安全操作中心(CSOC)中,作为一种防御工具,可监视和检测恶意网络流,否则会影响机密性,完整性和可用性(CIA)。 CSOC分析师依靠这些系统来决定检测到的威胁。但是,使用深度学习(DL)技术设计的IDS通常被视为黑匣子模型,并且没有为其预测提供理由。这为CSOC分析师造成了障碍,因为他们无法根据模型的预测改善决策。解决此问题的一种解决方案是设计可解释的ID(X-IDS)。这项调查回顾了可解释的AI(XAI)的最先进的ID,目前的挑战,并讨论了这些挑战如何涉及X-ID的设计。特别是,我们全面讨论了黑匣子和白盒方法。我们还在这些方法之间的性能和产生解释的能力方面提出了权衡。此外,我们提出了一种通用体系结构,该建筑认为人类在循环中,该架构可以用作设计X-ID时的指南。研究建议是从三个关键观点提出的:需要定义ID的解释性,需要为各种利益相关者量身定制的解释以及设计指标来评估解释的需求。
translated by 谷歌翻译
众所周知,张量网络回归模型在呈指数型的特征空间上运行,但是关于它们能够有效地利用此空间的有效性仍然存在问题。使用Novikov等人的多项式特征,我们提出相互作用分解作为一种工具,可以评估不同回归器的相对重要性,其函数是其多项式程度的函数。我们将这种分解应用于在MNIST和时尚MNIST数据集中训练的张量环和树张量网络模型,并发现多达75%的交互作用度对这些模型有意义地贡献了。我们还引入了一种新型的张量网络模型,该模型仅在相互作用的一小部分上进行明确训练,并发现这些模型能够仅使用指数特征空间的一小部分匹配甚至优于整个模型。这表明标准张量网络模型以低效率的方式利用其多项式回归器,较低的程度术语被大大不足。
translated by 谷歌翻译
We introduce a new rule-based optimization method for classification with constraints. The proposed method takes advantage of linear programming and column generation, and hence, is scalable to large datasets. Moreover, the method returns a set of rules along with their optimal weights indicating the importance of each rule for learning. Through assigning cost coefficients to the rules and introducing additional constraints, we show that one can also consider interpretability and fairness of the results. We test the performance of the proposed method on a collection of datasets and present two case studies to elaborate its different aspects. Our results show that a good compromise between interpretability and fairness on the one side, and accuracy on the other side, can be obtained by the proposed rule-based learning method.
translated by 谷歌翻译
深层神经网络以其对各种机器学习和人工智能任务的精湛处理而闻名。但是,由于其过度参数化的黑盒性质,通常很难理解深层模型的预测结果。近年来,已经提出了许多解释工具来解释或揭示模型如何做出决策。在本文中,我们回顾了这一研究,并尝试进行全面的调查。具体来说,我们首先介绍并阐明了人们通常会感到困惑的两个基本概念 - 解释和解释性。为了解决解释中的研究工作,我们通过提出新的分类法来阐述许多解释算法的设计。然后,为了了解解释结果,我们还调查了评估解释算法的性能指标。此外,我们总结了使用“可信赖”解释算法评估模型的解释性的当前工作。最后,我们审查并讨论了深层模型的解释与其他因素之间的联系,例如对抗性鲁棒性和从解释中学习,并介绍了一些开源库,以解释算法和评估方法。
translated by 谷歌翻译