当前的深神经网络(DNN)被过度参数化,并在推断每个任务期间使用其大多数神经元连接。然而,人的大脑开发了针对不同任务的专门区域,并通过其神经元连接的一小部分进行推断。我们提出了一种迭代修剪策略,引入了一个简单的重要性评分度量度量,该指标可以停用不重要的连接,解决DNN中的过度参数化并调节射击模式。目的是找到仍然能够以可比精度解决给定任务的最小连接,即更简单的子网。我们在MNIST上实现了LENET体系结构的可比性能,并且与CIFAR-10/100和Tiny-ImageNet上的VGG和Resnet架构的最先进算法相比,参数压缩的性能明显更高。我们的方法对于考虑到ADAM和SGD的两个不同优化器也表现良好。该算法并非旨在在考虑当前的硬件和软件实现时最小化失败,尽管与最新技术相比,该算法的性能合理。
translated by 谷歌翻译
随着深度学习的快速发展,神经网络的大小变得越来越大,以使培训和推理经常压倒硬件资源。鉴于神经网络通常被过度参数化,减少这种计算开销的一种有效方法是神经网络修剪,通过删除训练有素的神经网络中的冗余参数。最近观察到,修剪不仅可以减少计算开销,而且可以改善深神经网络(NNS)的经验鲁棒性,这可能是由于消除了虚假相关性的同时保留了预测精度。本文首次证明,修剪通常可以在完整的验证设置下改善基于RELU的NN的认证鲁棒性。使用流行的分支机构(BAB)框架,我们发现修剪可以通过减轻线性放松和子域分裂问题来增强认证稳健性验证的估计结合紧密度。我们通过现成的修剪方法验证了我们的发现,并进一步提出了一种基于稳定性的新修剪方法,该方法量身定制了用于减少神经元不稳定性的新方法,该方法在增强认证的鲁棒性方面优于现有的修剪方法。我们的实验表明,通过适当修剪NN,在标准培训下,其认证准确性最多可提高8.2%,在CIFAR10数据集中的对抗培训下最多可提高24.5%。我们还观察到存在经过认证的彩票票,这些彩票可以符合不同数据集的原始密集型号的标准和认证的稳健精度。我们的发现提供了一个新的角度来研究稀疏性与鲁棒性之间的有趣相互作用,即通过神经元稳定性解释稀疏性和认证鲁棒性的相互作用。代码可在以下网址提供:https://github.com/vita-group/certifiedpruning。
translated by 谷歌翻译
我们为神经网络提出了一种新颖,结构化修剪算法 - 迭代,稀疏结构修剪算法,称为I-Spasp。从稀疏信号恢复的思想启发,I-Spasp通过迭代地识别网络内的较大的重要参数组(例如,滤波器或神经元),这些参数组大多数对修剪和密集网络输出之间的残差贡献,然后基于这些组阈值以较小的预定定义修剪比率。对于具有Relu激活的双层和多层网络架构,我们展示了通过多项式修剪修剪诱导的错误,该衰减是基于密集网络隐藏表示的稀疏性任意大的。在我们的实验中,I-Spasp在各种数据集(即MNIST和ImageNet)和架构(即馈送前向网络,Resnet34和MobileNetv2)中进行评估,其中显示用于发现高性能的子网和改进经过几种数量级的可提供基线方法的修剪效率。简而言之,I-Spasp很容易通过自动分化实现,实现强大的经验结果,具有理论收敛保证,并且是高效的,因此将自己区分开作为少数几个计算有效,实用,实用,实用,实用,实用,实用,实用,实用和可提供的修剪算法之一。
translated by 谷歌翻译
最先进的计算机视觉方法的性能飞跃归因于深度神经网络的发展。但是,它通常以计算价格可能会阻碍其部署。为了减轻这种限制,结构化修剪是一种众所周知的技术,它包括去除通道,神经元或过滤器,并且通常用于生产更紧凑的模型。在大多数情况下,根据相对重要性标准选择要删除的计算。同时,对可解释的预测模型的需求极大地增加了,并激发了强大归因方法的发展,该方法突出了输入图像或特征图的像素的相对重要性。在这项工作中,我们讨论了现有的修剪启发式方法的局限性,其中包括基于梯度和基于梯度的方法。我们从归因方法中汲取灵感来设计一种新型的集成梯度修剪标准,其中每个神经元的相关性被定义为梯度变化在通往这种神经元去除的路径上的积分。此外,我们提出了一个纠缠的DNN修剪和微调流程图,以更好地保留DNN准确性,同时删除参数。我们通过在几个数据集,架构以及修剪场景上进行广泛的验证,该方法称为Singe,大大优于现有的最新DNN修剪方法。
translated by 谷歌翻译
由于稀疏神经网络通常包含许多零权重,因此可以在不降低网络性能的情况下潜在地消除这些不必要的网络连接。因此,设计良好的稀疏神经网络具有显着降低拖鞋和计算资源的潜力。在这项工作中,我们提出了一种新的自动修剪方法 - 稀疏连接学习(SCL)。具体地,重量被重新参数化为可培训权重变量和二进制掩模的元素方向乘法。因此,由二进制掩模完全描述网络连接,其由单位步进函数调制。理论上,从理论上证明了使用直通估计器(STE)进行网络修剪的基本原理。这一原则是STE的代理梯度应该是积极的,确保掩模变量在其最小值处收敛。在找到泄漏的Relu后,SoftPlus和Identity Stes可以满足这个原理,我们建议采用SCL的身份STE以进行离散面膜松弛。我们发现不同特征的面具梯度非常不平衡,因此,我们建议将每个特征的掩模梯度标准化以优化掩码变量训练。为了自动训练稀疏掩码,我们将网络连接总数作为我们的客观函数中的正则化术语。由于SCL不需要由网络层设计人员定义的修剪标准或超级参数,因此在更大的假设空间中探讨了网络,以实现最佳性能的优化稀疏连接。 SCL克服了现有自动修剪方法的局限性。实验结果表明,SCL可以自动学习并选择各种基线网络结构的重要网络连接。 SCL培训的深度学习模型以稀疏性,精度和减少脚波特的SOTA人类设计和自动修剪方法训练。
translated by 谷歌翻译
我们的神经科学和临床应用程序的激励,我们经验检查信息流的观察措施是否可以提出干预措施。我们通过在机器学习的公平性的背景下对人工神经网络进行实验来进行,目标是通过干预措施在系统中诱导公平。使用我们最近开发的$ M $-Information Flow框架,我们测量真实标签的信息流(负责精度,并且需要),并单独地,有关受保护属性的信息流(负责偏见,因此负责不希望的是培训的神经网络边缘。然后,我们通过修剪将流量幅度与干预这些边缘的效果进行比较。我们表明,携带较大信息流的修剪边缘有关受保护的属性在更大程度上会降低输出的偏差。这表明$ M $ -Information流程可以有意义地建议干预措施,以肯定的方式回答标题的问题。我们还评估了不同干预策略的偏见准确性权衡,分析了人们如何使用所需和不期望的信息的估计(这里,准确性和偏置流量)来告知保存前者的干预,同时减少后者。
translated by 谷歌翻译
现代深度神经网络往往太大而无法在许多实际情况下使用。神经网络修剪是降低这种模型的大小的重要技术和加速推断。Gibbs修剪是一种表达和设计神经网络修剪方法的新框架。结合统计物理和随机正则化方法的方法,它可以同时培训和修剪网络,使得学习的权重和修剪面膜彼此很好地适应。它可用于结构化或非结构化修剪,我们为每个提出了许多特定方法。我们将拟议的方法与许多当代神经网络修剪方法进行比较,发现Gibbs修剪优于它们。特别是,我们通过CIFAR-10数据集来实现修剪Reset-56的新型最先进的结果。
translated by 谷歌翻译
修剪神经网络可降低推理时间和记忆成本。在标准硬件上,如果修剪诸如特征地图之类的粗粒结构(例如特征地图),这些好处将特别突出。我们为二阶结构修剪(SOSP)设计了两种新型的基于显着性的方法,其中包括所有结构和层之间的相关性。我们的主要方法SOSP-H采用了创新的二阶近似,可以通过快速的Hessian-vector产品进行显着评估。 SOSP-H因此,尽管考虑到了完整的Hessian,但仍像一阶方法一样缩放。我们通过将SOSP-H与使用公认的Hessian近似值以及许多最先进方法进行比较来验证SOSP-H。尽管SOSP-H在准确性方面的表现或更好,但在可伸缩性和效率方面具有明显的优势。这使我们能够将SOSP-H扩展到大规模视觉任务,即使它捕获了网络所有层的相关性。为了强调我们修剪方法的全球性质,我们不仅通过删除预验证网络的结构,而且还通过检测建筑瓶颈来评估它们的性能。我们表明,我们的算法允许系统地揭示建筑瓶颈,然后将其删除以进一步提高网络的准确性。
translated by 谷歌翻译
过滤器修剪的目标是搜索不重要的过滤器以删除以便使卷积神经网络(CNNS)有效而不牺牲过程中的性能。挑战在于找到可以帮助确定每个过滤器关于神经网络的最终输出的重要或相关的信息的信息。在这项工作中,我们分享了我们的观察说,预先训练的CNN的批量标准化(BN)参数可用于估计激活输出的特征分布,而无需处理训练数据。在观察时,我们通过基于预先训练的CNN的BN参数评估每个滤波器的重要性来提出简单而有效的滤波修剪方法。 CiFar-10和Imagenet的实验结果表明,该方法可以在准确性下降和计算复杂性的计算复杂性和降低的折衷方面具有和不进行微调的卓越性能。
translated by 谷歌翻译
可认证的鲁棒性是在安全至关重要的情况下采用深层神经网络(DNN)的高度理想的属性,但通常需要建立乏味的计算。主要障碍在于大型DNN中的大量非线性。为了权衡DNN表现力(要求更多的非线性)和鲁棒性认证可伸缩性(更喜欢线性性),我们提出了一种新颖的解决方案来通过“授予”适当的线性水平来策略性地操纵神经元。我们建议的核心是首先将无关紧要的依赖神经元线性化,以消除既有用于DNN性能的多余的非线性组件,又对其认证有害。然后,我们优化替换线性激活的相关斜率和截距,以恢复模型性能,同时保持认证性。因此,典型的神经元修剪可以被视为一种特殊情况,即授予固定零斜率和截距的线性功能,这可能过于限制网络灵活性并牺牲其性能。在多个数据集和网络骨架上进行的广泛实验表明,我们的线性嫁接可以有效地收紧认证界限; (2)在没有认证的鲁棒培训的情况下实现竞争性认证的鲁棒性(即CIFAR-10型号的30%改进); (3)将完整的验证扩展到具有17m参数的大型对抗训练的模型。代码可在https://github.com/vita-group/linearity-grafting上找到。
translated by 谷歌翻译
网络压缩对于使深网的效率更高,更快且可推广到低端硬件至关重要。当前的网络压缩方法有两个开放问题:首先,缺乏理论框架来估计最大压缩率;其次,有些层可能会过多地进行,从而导致网络性能大幅下降。为了解决这两个问题,这项研究提出了一种基于梯度矩阵分析方法,以估计最大网络冗余。在最大速率的指导下,开发了一种新颖而有效的层次网络修剪算法,以最大程度地凝结神经元网络结构而无需牺牲网络性能。进行实质性实验以证明新方法修剪几个高级卷积神经网络(CNN)体系结构的功效。与现有的修剪方法相比,拟议的修剪算法实现了最先进的性能。与其他方法相比,在相同或相似的压缩比下,新方法提供了最高的网络预测准确性。
translated by 谷歌翻译
估计深神经网络(DNN)的概括误差(GE)是一项重要任务,通常依赖于持有数据的可用性。基于单个训练集更好地预测GE的能力可能会产生总体DNN设计原则,以减少对试用和错误的依赖以及其他绩效评估优势。为了寻找与GE相关的数量,我们使用无限宽度DNN限制到绑定的MI,研究了输入和最终层表示之间的相互信息(MI)。现有的基于输入压缩的GE绑定用于链接MI和GE。据我们所知,这代表了该界限的首次实证研究。为了实证伪造理论界限,我们发现它通常对于表现最佳模型而言通常很紧。此外,它在许多情况下检测到训练标签的随机化,反映了测试时间扰动的鲁棒性,并且只有很少的培训样本就可以很好地工作。考虑到输入压缩是广泛适用的,可以在信心估算MI的情况下,这些结果是有希望的。
translated by 谷歌翻译
由于其实现的实际加速,过滤器修剪已广泛用于神经网络压缩。迄今为止,大多数现有滤波器修剪工作探索过滤器通过使用通道内信息的重要性。在本文中,从频道间透视开始,我们建议使用信道独立性进行有效的滤波器修剪,该指标测量不同特征映射之间的相关性。较少独立的特征映射被解释为包含较少有用的信息$ / $知识,因此可以修剪其相应的滤波器而不会影响模型容量。我们在过滤器修剪的背景下系统地调查了渠道独立性的量化度量,测量方案和敏感性$ / $可靠性。我们对各种数据集不同模型的评估结果显示了我们方法的卓越性能。值得注意的是,在CIFAR-10数据集上,我们的解决方案可以分别为基线Resnet-56和Resnet-110型号的0.75 \%$ 0.94 \%$ 0.94 \%。模型大小和拖鞋减少了42.8 \%$和$ 47.4 \%$(for Resnet-56)和48.3 \%$ 48.3 \%$ 52.1 \%$(for resnet-110)。在ImageNet DataSet上,我们的方法可以分别达到40.8 \%$ 44.8 \%$ 74.8 \%$ 0.15 \%$ 0.15 \%$ 0.15美元的准确性。该代码可在https://github.com/eclipsess/chip_neurivs2021上获得。
translated by 谷歌翻译
彩票假设引发了通过识别大型随机初始化神经网络的稀疏子网来实现结构学习的修剪算法的快速发展。这些“胜利门票”的存在理论上已被证明,但在次优稀疏水平。当代修剪算法还在努力确定复杂的学习任务的稀疏彩票票。这个次优稀疏仅仅是存在证明和算法的文物还是修剪方法的一般限制?并且,如果存在非常稀疏的罚单,则当前算法是能够找到它们的当前算法,或者是实现有效网络压缩所需的进一步改进吗?为了系统地回答这些问题,我们推导了一个框架来植物并隐藏大型随机初始化的神经网络中的目标架构。对于机器学习中的三个共同挑战,我们手工制作极其稀疏的网络拓扑,将它们植入大型神经网络,并评估最先进的彩票修剪方法。我们发现,修剪算法的当前局限性识别极其稀疏的票证是算法的,而不是基本的性质,并且预期我们的种植框架将促进有效修剪算法的未来发展,因为我们已经解决了所提出的领域缺失基线的问题Frankle等人。
translated by 谷歌翻译
在过去几年中,神经网络的性能在越来越多的浮点操作(拖鞋)的成本上显着提高。但是,当计算资源有限时,更多的拖鞋可能是一个问题。作为解决这个问题的尝试,修剪过滤器是一种常见的解决方案,但大多数现有的修剪方法不有效地保持模型精度,因此需要大量的芬降时期。在本文中,我们提出了一种自动修剪方法,该方法学习保存的神经元以保持模型精度,同时将絮凝到预定目标。为了完成这项任务,我们介绍了一种可训练的瓶颈,只需要一个单一的单一时期,只需要一个数据集的25.6%(Cifar-10)或7.49%(ILSVRC2012)来了解哪些过滤器。在各种架构和数据集上的实验表明,该方法不仅可以在修剪后保持精度,而且在FineTuning之后也优越现有方法。我们在Reset-50上达到了52.00%的拖鞋,在ILSVRC2012上的灌溉后的前1个精度为47.51%,最先进的(SOTA)精度为76.63%。代码可用(链接匿名审核)。
translated by 谷歌翻译
保存隐私的神经网络(NN)推理解决方案最近在几种提供不同的延迟带宽权衡的解决方案方面获得了重大吸引力。其中,许多人依靠同态加密(HE),这是一种对加密数据进行计算的方法。但是,与他们的明文对应物相比,他的操作即使是最先进的计划仍然很慢。修剪NN模型的参数是改善推理潜伏期的众所周知的方法。但是,在明文上下文中有用的修剪方法可能对HE案的改善几乎可以忽略不计,这在最近的工作中也证明了这一点。在这项工作中,我们提出了一套新颖的修剪方法,以减少潜伏期和记忆要求,从而将明文修剪方法的有效性带到HE中。至关重要的是,我们的建议采用两种关键技术,即。堆积模型权重的置换和扩展,使修剪能够明显更多的密封性下文并分别恢复大部分精度损失。我们证明了我们的方法在完全连接的层上的优势,其中使用最近提出的称为瓷砖张量的包装技术填充了权重,该技术允许在非相互作用模式下执行Deep NN推断。我们在各种自动编码器架构上评估了我们的方法,并证明,对于MNIST上的小均值重建损失为1.5*10^{ - 5},我们将HE-SEAMABLE推断的内存要求和延迟减少了60%。
translated by 谷歌翻译
卷积神经网络(CNNS)在许多实际应用中成功了。但是,它们的高计算和存储要求通常使它们难以在资源受限的设备上部署。为了解决这个问题,已经提出了许多修剪算法用于CNN,但大多数人不能将CNNS提交给合理的水平。在本文中,我们提出了一种基于递归最小二乘(RLS)优化的训练和修剪CNN的新颖算法。在为某些时期培训CNN之后,我们的算法组合了逆输入自相关矩阵和权重矩阵,以按层评估和修剪不重要的输入通道或节点层。然后,我们的算法将继续培训修剪的网络,并且在修剪的网络恢复旧网络的完整性能之前,不会进行下一次修剪。此外,对于CNN,所提出的算法可用于前馈神经网络(FNN)。在MNIST,CIFAR-10和SVHN数据集上的三个实验表明,我们的算法可以实现更合理的修剪,并且具有比其他四个流行的修剪算法更高的学习效率。
translated by 谷歌翻译
模型压缩的目的是减小大型神经网络的大小,同时保持可比的性能。结果,通过减少冗余重量,神经元或层,可以大大降低资源有限应用中的计算和内存成本。提出了许多模型压缩算法,这些算法提供了令人印象深刻的经验成功。但是,对模型压缩的理论理解仍然受到限制。一个问题是了解网络是否比另一个相同结构更可压缩。另一个问题是量化有多少人可以通过理论上保证的准确性降解来修剪网络。在这项工作中,我们建议使用对稀疏敏感的$ \ ell_q $ -norm($ 0 <q <1 $)来表征可压缩性,并提供网络中的软稀疏性与受控程度的压缩程度之间的关系准确性降解结合。我们还开发了自适应算法,用于修剪我们理论所告知的网络中的每个神经元。数值研究表明,与标准修剪算法相比,提出的方法的表现有希望。
translated by 谷歌翻译
修剪技术可全面使用图像分类压缩卷积神经网络(CNN)。但是,大多数修剪方法需要一个经过良好训练的模型,以提供有用的支持参数,例如C1-核心,批处理值和梯度信息,如果预训练的模型的参数为,这可能会导致过滤器评估的不一致性不太优化。因此,我们提出了一种基于敏感性的方法,可以通过为原始模型增加额外的损害来评估每一层的重要性。由于准确性的性能取决于参数在所有层而不是单个参数中的分布,因此基于灵敏度的方法将对参数的更新具有鲁棒性。也就是说,我们可以获得对不完美训练和完全训练的模型之间每个卷积层的相似重要性评估。对于CIFAR-10上的VGG-16,即使原始模型仅接受50个时期训练,我们也可以对层的重要性进行相同的评估,并在对模型进行充分训练时的结果。然后,我们将通过量化的灵敏度从每一层中删除过滤器。我们基于敏感性的修剪框架在VGG-16,分别具有CIFAR-10,MNIST和CIFAR-100的VGG-16上有效验证。
translated by 谷歌翻译
将差异化随机梯度下降(DPSGD)应用于培训现代大规模神经网络(例如基于变压器的模型)是一项艰巨的任务,因为在每个迭代尺度上添加了噪声的幅度,都具有模型维度,从而阻碍了学习能力显著地。我们提出了一个统一的框架,即$ \ textsf {lsg} $,该框架充分利用了神经网络的低级别和稀疏结构,以减少梯度更新的维度,从而减轻DPSGD的负面影响。首先使用一对低级矩阵近似梯度更新。然后,一种新颖的策略用于稀疏梯度,从而导致低维,较少的嘈杂更新,这些更新尚未保留神经网络的性能。关于自然语言处理和计算机视觉任务的经验评估表明,我们的方法的表现优于其他最先进的基线。
translated by 谷歌翻译