接受场(RF)的大小一直是时间序列分类任务中一维卷积神经网络(1D-CNN)的最重要因素之一。已经采取了巨大的努力来选择适当的大小,因为它对性能产生了巨大影响,并且每个数据集都有很大的不同。在本文中,我们为1D-CNN提出了一个Omni级块(OS-Block),其中内核大小由简单而通用的规则决定。特别是,它是一组内核大小,可以根据时间序列的长度通过多个素数组成,可以有效地覆盖不同数据集的最佳RF大小。实验结果表明,具有OSBlock的模型可以达到与搜索最佳RF尺寸的模型相似的性能,并且由于最佳的最佳RF尺寸捕获能力,具有OS-Block的简单1D-CNN模型可实现最新状态。四个时间序列基准的ART性能,包括来自多个域的单变量和多元数据。全面的分析和讨论阐明了为什么OS-Block可以在不同数据集中捕获最佳的RF尺寸。可用代码[https://github.com/wensi-tang/os-cnn]
translated by 谷歌翻译
The receptive field (RF), which determines the region of time series to be ``seen'' and used, is critical to improve the performance for time series classification (TSC). However, the variation of signal scales across and within time series data, makes it challenging to decide on proper RF sizes for TSC. In this paper, we propose a dynamic sparse network (DSN) with sparse connections for TSC, which can learn to cover various RF without cumbersome hyper-parameters tuning. The kernels in each sparse layer are sparse and can be explored under the constraint regions by dynamic sparse training, which makes it possible to reduce the resource cost. The experimental results show that the proposed DSN model can achieve state-of-art performance on both univariate and multivariate TSC datasets with less than 50\% computational cost compared with recent baseline methods, opening the path towards more accurate resource-aware methods for time series analyses. Our code is publicly available at: https://github.com/QiaoXiao7282/DSN.
translated by 谷歌翻译
Time Series Classification (TSC) is an important and challenging problem in data mining. With the increase of time series data availability, hundreds of TSC algorithms have been proposed. Among these methods, only a few have considered Deep Neural Networks (DNNs) to perform this task. This is surprising as deep learning has seen very successful applications in the last years. DNNs have indeed revolutionized the field of computer vision especially with the advent of novel deeper architectures such as Residual and Convolutional Neural Networks. Apart from images, sequential data such as text and audio can also be processed with DNNs to reach state-of-the-art performance for document classification and speech recognition. In this article, we study the current state-ofthe-art performance of deep learning algorithms for TSC by presenting an empirical study of the most recent DNN architectures for TSC. We give an overview of the most successful deep learning applications in various time series domains under a unified taxonomy of DNNs for TSC. We also provide an open source deep learning framework to the TSC community where we implemented each of the compared approaches and evaluated them on a univariate TSC benchmark (the UCR/UEA archive) and 12 multivariate time series datasets. By training 8,730 deep learning models on 97 time series datasets, we propose the most exhaustive study of DNNs for TSC to date.
translated by 谷歌翻译
时间序列数据通常仅在观察过程中的中断时仅在有限的时间范围内获得。为了对这样的部分时间序列进行分类,我们需要考虑1)从2)不同时间戳绘制的可变长度数据。为了解决第一个问题,现有的卷积神经网络在卷积层之后使用全球池取消长度差异。这种体系结构遭受了将整个时间相关性纳入长数据和避免用于简短数据的功能崩溃之间的权衡。为了解决这种权衡,我们提出了自适应多尺度合并,该池从自适应数量的层中汇总了功能,即仅用于简短数据的前几层和更多的长数据层。此外,为了解决第二个问题,我们引入了时间编码,将观察时间戳嵌入中间特征中。我们的私有数据集和UCR/UEA时间序列档案中的实验表明,我们的模块提高了分类精度,尤其是在部分时间序列获得的短数据上。
translated by 谷歌翻译
模型的时间/空间接受场在顺序/空间任务中起重要作用。大型接受场有助于长期关系,而小型接受场有助于捕获当地的细节。现有方法构建具有手工设计的接收场的模型。我们可以有效地搜索接收场合组合以取代手工设计的模式吗?为了回答这个问题,我们建议通过全球到本地搜索方案找到更好的接受现场组合。我们的搜索方案利用了全局搜索以找到粗糙的组合和本地搜索,以进一步获得精致的接收场组合。全球搜索发现除了人类设计的模式以外的其他可能的粗糙组合。除全球搜索外,我们提出了一种期望引导的迭代局部搜索方案,以有效地完善组合。我们的RF-NEXT模型,将接受现场搜索插入各种模型,提高许多任务的性能,例如时间动作分割,对象检测,实例分割和语音综合。源代码可在http://mmcheng.net/rfnext上公开获得。
translated by 谷歌翻译
在实践中,非常苛刻,有时无法收集足够大的标记数据数据集以成功培训机器学习模型,并且对此问题的一个可能解决方案是转移学习。本研究旨在评估如何可转让的时间序列数据和哪些条件下的不同域之间的特征。在训练期间,在模型的预测性能和收敛速度方面观察到转移学习的影响。在我们的实验中,我们使用1,500和9,000个数据实例的减少数据集来模仿现实世界的条件。使用相同的缩小数据集,我们培训了两组机器学习模型:那些随着转移学习的培训和从头开始培训的机器学习模型。使用四台机器学习模型进行实验。在相同的应用领域(地震学)以及相互不同的应用领域(地震,语音,医学,金融)之间进行知识转移。我们在训练期间遵守模型的预测性能和收敛速度。为了确认所获得的结果的有效性,我们重复了实验七次并应用了统计测试以确认结果的重要性。我们研究的一般性结论是转移学习可能会增加或不会对模型的预测性能或其收敛速度产生负面影响。在更多细节中分析收集的数据,以确定哪些源域和目标域兼容以用于传输知识。我们还分析了目标数据集大小的效果和模型的选择及其超参数对转移学习的影响。
translated by 谷歌翻译
In standard Convolutional Neural Networks (CNNs), the receptive fields of artificial neurons in each layer are designed to share the same size. It is well-known in the neuroscience community that the receptive field size of visual cortical neurons are modulated by the stimulus, which has been rarely considered in constructing CNNs. We propose a dynamic selection mechanism in CNNs that allows each neuron to adaptively adjust its receptive field size based on multiple scales of input information. A building block called Selective Kernel (SK) unit is designed, in which multiple branches with different kernel sizes are fused using softmax attention that is guided by the information in these branches. Different attentions on these branches yield different sizes of the effective receptive fields of neurons in the fusion layer. Multiple SK units are stacked to a deep network termed Selective Kernel Networks (SKNets). On the ImageNet and CIFAR benchmarks, we empirically show that SKNet outperforms the existing state-of-the-art architectures with lower model complexity. Detailed analyses show that the neurons in SKNet can capture target objects with different scales, which verifies the capability of neurons for adaptively adjusting their receptive field sizes according to the input. The code and models are available at https://github.com/implus/SKNet.
translated by 谷歌翻译
基于惯性数据的人类活动识别(HAR)是从智能手机到超低功率传感器的嵌入式设备上越来越扩散的任务。由于深度学习模型的计算复杂性很高,因此大多数嵌入式HAR系统基于简单且不那么精确的经典机器学习算法。这项工作弥合了在设备上的HAR和深度学习之间的差距,提出了一组有效的一维卷积神经网络(CNN),可在通用微控制器(MCUS)上部署。我们的CNN获得了将超参数优化与子字节和混合精确量化的结合,以在分类结果和记忆职业之间找到良好的权衡。此外,我们还利用自适应推断作为正交优化,以根据处理后的输入来调整运行时的推理复杂性,从而产生更灵活的HAR系统。通过在四个数据集上进行实验,并针对超低功率RISC-V MCU,我们表明(i)我们能够为HAR获得一组丰富的帕累托(Pareto)最佳CNN,以范围超过1个数量级记忆,潜伏期和能耗; (ii)由于自适应推断,我们可以从单个CNN开始得出> 20个运行时操作模式,分类分数的不同程度高达10%,并且推理复杂性超过3倍,并且内存开销有限; (iii)在四个基准中的三个基准中,我们的表现都超过了所有以前的深度学习方法,将记忆占用率降低了100倍以上。获得更好性能(浅层和深度)的少数方法与MCU部署不兼容。 (iv)我们所有的CNN都与推理延迟<16ms的实时式evice Har兼容。他们的记忆职业在0.05-23.17 kb中有所不同,其能源消耗为0.005和61.59 UJ,可在较小的电池供应中进行多年的连续操作。
translated by 谷歌翻译
Transportation mode classification, the process of predicting the class labels of moving objects transportation modes, has been widely applied to a variety of real world applications, such as traffic management, urban computing, and behavior study. However, existing studies of transportation mode classification typically extract the explicit features of trajectory data but fail to capture the implicit features that affect the classification performance. In addition, most of the existing studies also prefer to apply RNN-based models to embed trajectories, which is only suitable for classifying small-scale data. To tackle the above challenges, we propose an effective and scalable framework for transportation mode classification over GPS trajectories, abbreviated Estimator. Estimator is established on a developed CNN-TCN architecture, which is capable of leveraging the spatial and temporal hidden features of trajectories to achieve high effectiveness and efficiency. Estimator partitions the entire traffic space into disjointed spatial regions according to traffic conditions, which enhances the scalability significantly and thus enables parallel transportation classification. Extensive experiments using eight public real-life datasets offer evidence that Estimator i) achieves superior model effectiveness (i.e., 99% Accuracy and 0.98 F1-score), which outperforms state-of-the-arts substantially; ii) exhibits prominent model efficiency, and obtains 7-40x speedups up over state-of-the-arts learning-based methods; and iii) shows high model scalability and robustness that enables large-scale classification analytics.
translated by 谷歌翻译
我们研究了时间序列分类(TSC),是时间序列数据挖掘的根本任务。事先从两个主要方向接近TSC:(1)基于相似性的方法,用于基于最近邻居的时间系列,(2)直接以数据驱动的方式学习分类表示的深度学习模型。在这两条研究线内的不同工作机制激励,我们的目的是以与共同模拟时间序列相似度的方式连接它们并学习表示。这是一个具有挑战性的任务,因为目前尚不清楚我们应该如何有效地利用相似性信息。为了解决挑战,我们提出了相似度感知的时序分类(SIMTSC),这是一种概念上简单且一般的框架,其模型与图形神经网络(GNN)的相似性信息。具体地,我们将TSC标记为图中的节点分类问题,其中节点对应于时间序列,并且链路对应于配对相似性。我们进一步设计了一种图形施工策略和具有负采样的批量培训算法,以提高培训效率。我们将SIMTSC与RESENT作为骨干网和动态时间翘曲(DTW)作为相似度测量。在完整的UCR数据集和几个多变量数据集上的广泛实验证明了在监督和半监督设置中将相似信息纳入深度学习模型的有效性。我们的代码可在https://github.com/daochenzha/simtsc提供
translated by 谷歌翻译
深度学习的繁荣有助于场景文本检测的快速进步。在所有具有卷积网络的方法中,基于细分的方法在检测任意形状和极端纵横比的文本实例方面的优越性,引起了广泛的关注。但是,自下而上的方法仅限于其分割模型的性能。在本文中,我们提出了DPTNET(双路线变压器网络),这是一种简单而有效的体系结构,可为场景文本检测任务建模全局和本地信息。我们进一步提出了一种平行的设计,将卷积网络与强大的自我发场机制相结合,以在注意力路径和卷积路径之间提供互补的线索。此外,开发了两个路径上的双向相互作用模块,以提供通道和空间尺寸的互补线索。我们还通过向其添加额外的多头注意力层来升级集中操作。我们的DPTNET在MSRA-TD500数据集上实现了最先进的结果,并就检测准确性和速度提供了其他标准基准的竞争结果。
translated by 谷歌翻译
最近,已经成功地应用于各种遥感图像(RSI)识别任务的大量基于深度学习的方法。然而,RSI字段中深度学习方法的大多数现有进步严重依赖于手动设计的骨干网络提取的特征,这严重阻碍了由于RSI的复杂性以及先前知识的限制而受到深度学习模型的潜力。在本文中,我们研究了RSI识别任务中的骨干架构的新设计范式,包括场景分类,陆地覆盖分类和对象检测。提出了一种基于权重共享策略和进化算法的一拍架构搜索框架,称为RSBNet,其中包括三个阶段:首先,在层面搜索空间中构造的超空网是在自组装的大型中预先磨削 - 基于集合单路径培训策略进行缩放RSI数据集。接下来,预先培训的SuperNet通过可切换识别模块配备不同的识别头,并分别在目标数据集上进行微调,以获取特定于任务特定的超网络。最后,我们根据没有任何网络训练的进化算法,搜索最佳骨干架构进行不同识别任务。对于不同识别任务的五个基准数据集进行了广泛的实验,结果显示了所提出的搜索范例的有效性,并证明搜索后的骨干能够灵活地调整不同的RSI识别任务并实现令人印象深刻的性能。
translated by 谷歌翻译
The automated machine learning (AutoML) field has become increasingly relevant in recent years. These algorithms can develop models without the need for expert knowledge, facilitating the application of machine learning techniques in the industry. Neural Architecture Search (NAS) exploits deep learning techniques to autonomously produce neural network architectures whose results rival the state-of-the-art models hand-crafted by AI experts. However, this approach requires significant computational resources and hardware investments, making it less appealing for real-usage applications. This article presents the third version of Pareto-Optimal Progressive Neural Architecture Search (POPNASv3), a new sequential model-based optimization NAS algorithm targeting different hardware environments and multiple classification tasks. Our method is able to find competitive architectures within large search spaces, while keeping a flexible structure and data processing pipeline to adapt to different tasks. The algorithm employs Pareto optimality to reduce the number of architectures sampled during the search, drastically improving the time efficiency without loss in accuracy. The experiments performed on images and time series classification datasets provide evidence that POPNASv3 can explore a large set of assorted operators and converge to optimal architectures suited for the type of data provided under different scenarios.
translated by 谷歌翻译
由于存储器和计算资源有限,部署在移动设备上的卷积神经网络(CNNS)是困难的。我们的目标是通过利用特征图中的冗余来设计包括CPU和GPU的异构设备的高效神经网络,这很少在神经结构设计中进行了研究。对于类似CPU的设备,我们提出了一种新颖的CPU高效的Ghost(C-Ghost)模块,以生成从廉价操作的更多特征映射。基于一组内在的特征映射,我们使用廉价的成本应用一系列线性变换,以生成许多幽灵特征图,可以完全揭示内在特征的信息。所提出的C-Ghost模块可以作为即插即用组件,以升级现有的卷积神经网络。 C-Ghost瓶颈旨在堆叠C-Ghost模块,然后可以轻松建立轻量级的C-Ghostnet。我们进一步考虑GPU设备的有效网络。在建筑阶段的情况下,不涉及太多的GPU效率(例如,深度明智的卷积),我们建议利用阶段明智的特征冗余来制定GPU高效的幽灵(G-GHOST)阶段结构。舞台中的特征被分成两个部分,其中使用具有较少输出通道的原始块处理第一部分,用于生成内在特征,另一个通过利用阶段明智的冗余来生成廉价的操作。在基准测试上进行的实验证明了所提出的C-Ghost模块和G-Ghost阶段的有效性。 C-Ghostnet和G-Ghostnet分别可以分别实现CPU和GPU的准确性和延迟的最佳权衡。代码可在https://github.com/huawei-noah/cv-backbones获得。
translated by 谷歌翻译
基于注意力的模型已在许多领域(例如计算机视觉和自然语言处理)广泛使用。但是,尚未深入探索时间序列分类(TSC)中的相关应用,导致大量TSC算法仍然遭受注意机制的一般问题,例如二次复杂性。在本文中,我们通过提出灵活的多头线性注意力(FMLA)来促进注意机制的效率和性能,从而通过与可变形的卷积块和在线知识蒸馏来提高局部意识。更重要的是,我们提出了一种简单但有效的遮罩机制,有助于减少时间序列中的噪声影响,并通过按比例掩盖每个给定序列的某些位置来减少所提出的FMLA的冗余。为了稳定这种机制,将样品通过随机掩模层几次转发,并将其输出聚合以使用常规掩码层教相同的模型。我们在85 UCR2018数据集上进行了广泛的实验,以将我们的算法与11个知名算法进行比较,结果表明,我们的算法在TOP-1准确性方面具有可比性的性能。我们还将模型与三个基于变压器的模型相对于每秒的浮点操作和参数数量进行了比较,并发现我们的算法在较低的复杂性方面可显着提高效率。
translated by 谷歌翻译
在本文中,我们提出了时间序列分类方法的创新转移学习。我们没有使用UCR存档中的现有数据集作为源数据集,而是生成了15,000,000个合成单变量时间序列数据集,该数据集是使用我们唯一的合成时间序列生成器算法创建的,该数据可以生成具有不同模式和角度和角度和不同序列长度的数据。此外,我们没有像以前的研究一样使用UCR存档提供的分类任务作为源任务,而是使用自己的55个回归任务作为源任务,这比从UCR存档中选择分类任务更好
translated by 谷歌翻译
高光谱图像(HSI)分类一直是决定的热门话题,因为高光谱图像具有丰富的空间和光谱信息,并为区分不同的土地覆盖物体提供了有力的基础。从深度学习技术的发展中受益,基于深度学习的HSI分类方法已实现了有希望的表现。最近,已经提出了一些用于HSI分类的神经架构搜索(NAS)算法,这将HSI分类的准确性进一步提高到了新的水平。在本文中,NAS和变压器首次合并用于处理HSI分类任务。与以前的工作相比,提出的方法有两个主要差异。首先,我们重新访问了先前的HSI分类NAS方法中设计的搜索空间,并提出了一个新型的混合搜索空间,该搜索空间由空间主导的细胞和频谱主导的单元组成。与以前的工作中提出的搜索空间相比,所提出的混合搜索空间与HSI数据的特征更加一致,即HSIS具有相对较低的空间分辨率和非常高的光谱分辨率。其次,为了进一步提高分类准确性,我们尝试将新兴变压器模块移植到自动设计的卷积神经网络(CNN)上,以将全局信息添加到CNN学到的局部区域的特征中。三个公共HSI数据集的实验结果表明,所提出的方法的性能要比比较方法更好,包括手动设计的网络和基于NAS的HSI分类方法。特别是在最近被捕获的休斯顿大学数据集中,总体准确性提高了近6个百分点。代码可在以下网址获得:https://github.com/cecilia-xue/hyt-nas。
translated by 谷歌翻译
长期数据的分类是一个重要的机器学习任务,并出现在许多应用程序中。经常性的神经网络,变压器和卷积神经网络是从顺序数据学习的三种主要技术。在这些方法中,在时间序列回归中缩放到非常长序列的时间卷积网络(TCN)已经取得了显着的进展。但是,对于序列分类的TCNS的性能并不令人满意,因为它们在最后位置使用偏斜连接协议和输出类。这种不对称限制了它们对分类的性能,这取决于整个序列。在这项工作中,我们提出了一种称为循环扩张卷积神经网络(CDIL-CNN)的对称的多尺度架构,其中每个位置具有相同的机会从前一层处接收来自其他位置的信息。我们的模型在所有位置提供分类登录,我们可以应用一个简单的集合学习来实现更好的决定。我们在各种长期数据集上测试了CDIL-CNN。实验结果表明,我们的方法在许多最先进的方法上具有卓越的性能。
translated by 谷歌翻译
目的。手写是日常生活中最常见的模式之一,由于它具有挑战性的应用,例如手写识别(HWR),作家识别和签名验证。与仅使用空间信息(即图像)的离线HWR相反,在线HWR(ONHWR)使用更丰富的时空信息(即轨迹数据或惯性数据)。尽管存在许多离线HWR数据集,但只有很少的数据可用于开发纸质上的ONHWR方法,因为它需要硬件集成的笔。方法。本文为实时序列到序列(SEQ2SEQ)学习和基于单个字符的识别提供了数据和基准模型。我们的数据由传感器增强的圆珠笔记录,从三轴加速度计,陀螺仪,磁力计和力传感器100 \,\ textit {hz}产生传感器数据流。我们建议各种数据集,包括与作者依赖和作者无关的任务的方程式和单词。我们的数据集允许在平板电脑上的经典ONHWR与传感器增强笔之间进行比较。我们使用经常性和时间卷积网络和变压器与连接派时间分类(CTC)损失(CTC)损失(CE)损失,为SEQ2SEQ和基于单个字符的HWR提供了评估基准。结果。我们的卷积网络与Bilstms相结合,优于基于变压器的架构,与基于序列的分类任务的启动时间相提并论,并且与28种最先进的技术相比,结果更好。时间序列扩展方法改善了基于序列的任务,我们表明CE变体可以改善单个分类任务。
translated by 谷歌翻译
眼目光信息的收集为人类认知,健康和行为的许多关键方面提供了一个窗口。此外,许多神经科学研究补充了从眼睛跟踪中获得的行为信息,以及脑电图(EEG)提供的高时间分辨率和神经生理学标记。必不可少的眼睛跟踪软件处理步骤之一是将连续数据流的分割为与扫视,固定和眨眼等眼睛跟踪应用程序相关的事件。在这里,我们介绍了Detrtime,这是一个新颖的时间序列分割框架,该框架创建了不需要额外记录的眼睛跟踪模式并仅依靠脑电图数据的眼部事件检测器。我们的端到端基于深度学习的框架将计算机视觉的最新进展带到了脑电图数据的《时代》系列分割的最前沿。 Detr Time在各种眼睛追踪实验范式上实现眼部事件检测中的最新性能。除此之外,我们还提供了证据表明我们的模型在脑电图阶段分割的任务中很好地概括了。
translated by 谷歌翻译