This paper proposes a novel observer-based controller for Vertical Take-Off and Landing (VTOL) Unmanned Aerial Vehicle (UAV) designed to directly receive measurements from a Vision-Aided Inertial Navigation System (VA-INS) and produce the required thrust and rotational torque inputs. The VA-INS is composed of a vision unit (monocular or stereo camera) and a typical low-cost 6-axis Inertial Measurement Unit (IMU) equipped with an accelerometer and a gyroscope. A major benefit of this approach is its applicability for environments where the Global Positioning System (GPS) is inaccessible. The proposed VTOL-UAV observer utilizes IMU and feature measurements to accurately estimate attitude (orientation), gyroscope bias, position, and linear velocity. Ability to use VA-INS measurements directly makes the proposed observer design more computationally efficient as it obviates the need for attitude and position reconstruction. Once the motion components are estimated, the observer-based controller is used to control the VTOL-UAV attitude, angular velocity, position, and linear velocity guiding the vehicle along the desired trajectory in six degrees of freedom (6 DoF). The closed-loop estimation and the control errors of the observer-based controller are proven to be exponentially stable starting from almost any initial condition. To achieve global and unique VTOL-UAV representation in 6 DoF, the proposed approach is posed on the Lie Group and the design in unit-quaternion is presented. Although the proposed approach is described in a continuous form, the discrete version is provided and tested. Keywords: Vision-aided inertial navigation system, unmanned aerial vehicle, vertical take-off and landing, stochastic, noise, Robotics, control systems, air mobility, observer-based controller algorithm, landmark measurement, exponential stability.
translated by 谷歌翻译
开发了一个领导者追随者系统,用于合作运输。据我们所知,这是一个不需要互联通信的第一工作,并且可以实时修改有效载荷的参考轨迹,以便它可以应用于动态变化的环境。为了在无通信条件下实时跟踪修改的参考轨迹,引导跟随系统被认为是非文展系统,其中开发了控制器以实现有效载荷的渐近跟踪。为了消除安装力传感器的需要,开发了UKFS(Unscented Kalman滤波器)以估计领导者和追随者所施加的力量。进行稳定性分析以证明闭环系统的跟踪误差。仿真结果表明跟踪控制器的良好性能。实验表明,领导者的控制器和追随者可以在现实世界中工作,但是跟踪误差受到限制空间中气流的干扰的影响。
translated by 谷歌翻译
稳定性和安全性是成功部署自动控制系统的关键特性。作为一个激励示例,请考虑在复杂的环境中自动移动机器人导航。概括到不同操作条件的控制设计需要系统动力学模型,鲁棒性建模错误以及对安全\ newzl {约束}的满意度,例如避免碰撞。本文开发了一个神经普通微分方程网络,以从轨迹数据中学习哈密顿系统的动态。学识渊博的哈密顿模型用于合成基于能量的被动性控制器,并分析其\ emph {鲁棒性},以在学习模型及其\ emph {Safety}中对环境施加的约束。考虑到系统的所需参考路径,我们使用虚拟参考调查员扩展了设计,以实现跟踪控制。州长国家是一个调节点,沿参考路径移动,平衡系统能级,模型不确定性界限以及违反安全性的距离,以确保稳健性和安全性。我们的哈密顿动力学学习和跟踪控制技术在\修订后的{模拟的己谐和四型机器人}在混乱的3D环境中导航。
translated by 谷歌翻译
我们提出了一种能够跟踪高度侵略性轨迹的新的四轮电路几何控制方案。我们的几何控制器使用所以(3)的对数图来表达Lie代数中的旋转误差,并且我们表明它是全球有吸引力的,而无需复杂的混合切换方案。我们展示了我们的控制器在模拟实验中对高侵袭性轨迹的表现。另外,我们介绍了该控制器的适应,该控制器允许我们在板载飞行控制单元上有效地接口角速率控制器,并显示这种适当的控制方案在四轮硬件平台上跟踪激发轨迹的能力。
translated by 谷歌翻译
在本文中,我们分析了具有基于视觉导航的无人机(UAV)的时间延迟动力学对控制器设计的影响。时间延迟是网络物理系统中不可避免的现象,并且对无人机的控制器设计和轨迹产生具有重要意义。时间延迟对无人机动态的影响随着基于视力较慢的导航堆栈的使用而增加。我们表明,文献中的现有模型不包括时间延迟,不适合控制器调整,因为一个微不足道的解决方案始终存在错误的解决方案。我们确定的微不足道的解决方案表明,使用无限控制器的利益来实现最佳性能,这与实际发现相矛盾。我们通过引入无人机的新型非线性时间延迟模型来避免这种缺点,然后获得与每个UAV控制回路相对应的一组线性解耦模型。分析了角度和高度动力学的线性时间延迟模型的成本函数,与无延迟模型相反,我们显示了有限的最佳控制器参数的存在。由于使用了时间延迟模型,我们在实验上表明,所提出的模型准确地表示系统稳定性限制。由于时间延迟的考虑,我们使用基于视觉探视的无人机(VO)导航,在跟踪峰值速度为2.09 m/s的lemsistate轨迹时,我们实现了RMSE 5.01 cm的跟踪结果,这与最新-艺术。
translated by 谷歌翻译
来自视觉信息的特征点的全局收敛位置观察者的设计是一个具有挑战性的问题,特别是对于仅具有惯性测量的情况,并且没有均匀可观察性的假设,这仍然长时间保持开放。我们在本文中提供了解决问题的解决方案,假设只有特征点的轴承,以及机器人的偏置线性加速度和机器人的旋转速度 - 都可以使用。此外,与现有相关结果相反,我们不需要重力常数的值。所提出的方法在最近开发的基于参数估计的观察者(Ortega等人,Syst。控制。Lett。,Vol.85,2015)及其在我们以前的工作中的矩阵群体的延伸。给出了观察者收敛的机器人轨迹的条件,这些条件比激发和均匀完全可观察性条件的标准持久性严格弱。最后,我们将建议的设计应用于视觉惯性导航问题。还提出了仿真结果以说明我们的观察者设计。
translated by 谷歌翻译
拟议的控制方法使用基于自适应的馈电控制器来为CDPR建立一个被动输入输出映射,该映射与线性不变的严格阳性真实反馈控制器一起使用,以确保稳健的闭环输入输出稳定性和渐进式姿势轨迹通过消极定理跟踪。所提出的控制器的新颖性是其配方用于一系列有效载荷态度参数化,包括任何无约束的态度参数化,四元组或方向余弦矩阵(DCM)。通过用刚性和柔性电缆的CDPR进行数值模拟,证明了所提出的控制器的性能和鲁棒性。结果证明了仔细定义CDPR的姿势误差的重要性,CDPR的姿势误差是在使用Quaternion和dcm时以乘法方式执行的,并且在使用不受约束的态度参数时(例如Euler-andle-angle序列)时以特定的添加剂方式执行。
translated by 谷歌翻译
在本文中,提出了一个稳定稳定的轨迹跟踪控制器,用于多uav有效载荷运输。多uav有效负载系统在无人机和有效负载框架的垂直刚性链接之间具有2DOF磁球接头,因此无人机可以自由滚动或自由投球。这些垂直链接紧密地连接到有效载荷上,无法移动。为完整的有效载体 - uav系统得出了输入输出反馈线性化模型以及有效载荷轨迹跟踪的推力矢量控制。关于跟踪控制定律的理论分析表明,控制定律是指数稳定的,从而确保了沿期望轨迹的安全运输。为了验证拟议的控制定律的性能,提供了数值模拟以及高保真凉亭实时仿真的结果。接下来,针对两种实际情况分析了提议的控制器的鲁棒性:有效载荷和有效载荷质量不确定性的外部干扰。结果清楚地表明,所提出的控制器在实现指数稳定的轨迹跟踪的同时具有稳健性和计算效率。
translated by 谷歌翻译
该论文提出了两种控制方法,用于用微型四轮驱动器进行反弹式操纵。首先,对专门为反转设计设计的现有前馈控制策略进行了修订和改进。使用替代高斯工艺模型的贝叶斯优化通过在模拟环境中反复执行翻转操作来找到最佳运动原语序列。第二种方法基于闭环控制,它由两个主要步骤组成:首先,即使在模型不确定性的情况下,自适应控制器也旨在提供可靠的参考跟踪。控制器是通过通过测量数据调整的高斯过程来增强无人机的标称模型来构建的。其次,提出了一种有效的轨迹计划算法,该算法仅使用二次编程来设计可行的轨迹为反弹操作设计。在模拟和使用BitCraze Crazyflie 2.1四肢旋转器中对两种方法进行了分析。
translated by 谷歌翻译
最近的四型车辆超越了常规设计,更加强调可折叠和可重构的身体。但是,最新的状态仍然着重于此类设计的机械可行性,在配置切换过程中有关车辆的跟踪性能的讨论有限。在本文中,我们提出了一个完整的控制和计划框架,用于在配置切换过程中进行态度跟踪并遏制任何基于开关的干扰,这可能导致违反安全限制并导致崩溃。控制框架包括一个具有估计器的形态感知自适应控制器,以说明参数变化和最小值轨迹计划器,以在切换时实现稳定的飞行。态度跟踪的稳定性分析是通过采用开关系统理论和仿真结果来验证了拟议的框架,该框架是通过通道通过通道的可折叠四极管飞行的框架。
translated by 谷歌翻译
We propose a multisensor fusion framework for onboard real-time navigation of a quadrotor in an indoor environment, by integrating sensor readings from an Inertial Measurement Unit (IMU), a camera-based object detection algorithm, and an Ultra-WideBand (UWB) localization system. The sensor readings from the camera-based object detection algorithm and the UWB localization system arrive intermittently, since the measurements are not readily available. We design a Kalman filter that manages intermittent observations in order to handle and fuse the readings and estimate the pose of the quadrotor for tracking a predefined trajectory. The system is implemented via a Hardware-in-the-loop (HIL) simulation technique, in which the dynamic model of the quadrotor is simulated in an open-source 3D robotics simulator tool, and the whole navigation system is implemented on Artificial Intelligence (AI) enabled edge GPU. The simulation results show that our proposed framework offers low positioning and trajectory errors, while handling intermittent sensor measurements.
translated by 谷歌翻译
对于不确定的多个输入多输出(MIMO)非线性系统,实现渐近跟踪是不平凡的,并且大多数现有方法通常需要某些可控性条件,如果涉及意外的执行器故障,这些条件是相当限制性的,甚至是不切实际的。在本说明中,我们提出了一种能够实现具有较不保守(更实用)可控性条件的零误差稳态跟踪的方法。通过将新颖的Nussbaum增益技术和一些积极的集成函数纳入控制设计,我们为系统开发了强大的自适应渐近跟踪控制方案,随着时变的控制增益未知其幅度和方向。通过诉诸某些可行的辅助矩阵的存在,进一步放松了当前的最新可控性条件,从而扩大了可以在拟议的控制方案中考虑的系统类别。所有闭环信号均被确保在全球范围内最终均匀界定。此外,这种控制方法进一步扩展到涉及间歇性执行器断层以及适用于机器人系统的情况。最后,进行了模拟研究以证明该方法的有效性和灵活性。
translated by 谷歌翻译
全向多旋转器具有脱钩的转换和旋转运动的有利的可操作性,可以极大地取代传统的多电气运动能力。这样的可操作性需要全向多旋转器,才能经常改变推力振幅甚至方向,这是转子从转子自身动态引起的沉降时间的容易产生的。此外,在存在转子动力学的情况下,全向多动物在跟踪控制的稳定性尚未得到解决。为了解决此问题,我们提出了一个几何跟踪控制器,该控制器考虑了转子动力学。我们表明,所提出的控制器几乎呈指数稳定的误差动力学的零平衡。在模拟中验证了控制器的跟踪性能和稳定性。此外,已经执行了具有全向多动物的单轴力实验,以确认所提出的控制器在减轻现实世界中转子的沉降时间方面的性能。
translated by 谷歌翻译
Marine waves significantly disturb the unmanned surface vehicle (USV) motion. An unmanned aerial vehicle (UAV) can hardly land on a USV that undergoes irregular motion. An oversized landing platform is usually necessary to guarantee the landing safety, which limits the number of UAVs that can be carried. We propose a landing system assisted by tether and robot manipulation. The system can land multiple UAVs without increasing the USV's size. An MPC controller stabilizes the end-effector and tracks the UAVs, and an adaptive estimator addresses the disturbance caused by the base motion. The working strategy of the system is designed to plan the motion of each device. We have validated the manipulator controller through simulations and well-controlled indoor experiments. During the field tests, the proposed system caught and placed the UAVs when the disturbed USV roll range was approximately 12 degrees.
translated by 谷歌翻译
我们提出了通过现实的模拟和现实世界实验来支持可复制研究的多运动无人机控制(UAV)和估计系统。我们提出了一个独特的多帧本地化范式,用于同时使用多个传感器同时估算各种参考框架中的无人机状态。该系统可以在GNSS和GNSS贬低的环境中进行复杂的任务,包括室外室内过渡和执行冗余估计器,以备份不可靠的本地化源。提出了两种反馈控制设计:一个用于精确和激进的操作,另一个用于稳定和平稳的飞行,并进行嘈杂的状态估计。拟议的控制和估计管道是在3D中使用Euler/Tait-Bryan角度表示的,而无需使用Euler/Tait-Bryan角度表示。取而代之的是,我们依靠旋转矩阵和一个新颖的基于标题的惯例来代表标准多电流直升机3D中的一个自由旋转自由度。我们提供了积极维护且有据可查的开源实现,包括对无人机,传感器和本地化系统的现实模拟。拟议的系统是多年应用系统,空中群,空中操纵,运动计划和遥感的多年研究产物。我们所有的结果都得到了现实世界中的部署的支持,该系统部署将系统塑造成此处介绍的表单。此外,该系统是在我们团队从布拉格的CTU参与期间使用的,该系统在享有声望的MBZIRC 2017和2020 Robotics竞赛中,还参加了DARPA SubT挑战赛。每次,我们的团队都能在世界各地最好的竞争对手中获得最高位置。在每种情况下,挑战都促使团队改善系统,并在紧迫的期限内获得大量高质量的体验。
translated by 谷歌翻译
姿势估计对于机器人感知,路径计划等很重要。机器人姿势可以在基质谎言组上建模,并且通常通过基于滤波器的方法进行估算。在本文中,我们在存在随机噪声的情况下建立了不变扩展Kalman滤波器(IEKF)的误差公式,并将其应用于视觉辅助惯性导航。我们通过OpenVINS平台上的数值模拟和实验评估我们的算法。在Euroc公共MAV数据集上执行的仿真和实验都表明,我们的算法优于某些基于最先进的滤波器方法,例如基于Quaternion的EKF,首先估计Jacobian EKF等。
translated by 谷歌翻译
We address the theoretical and practical problems related to the trajectory generation and tracking control of tail-sitter UAVs. Theoretically, we focus on the differential flatness property with full exploitation of actual UAV aerodynamic models, which lays a foundation for generating dynamically feasible trajectory and achieving high-performance tracking control. We have found that a tail-sitter is differentially flat with accurate aerodynamic models within the entire flight envelope, by specifying coordinate flight condition and choosing the vehicle position as the flat output. This fundamental property allows us to fully exploit the high-fidelity aerodynamic models in the trajectory planning and tracking control to achieve accurate tail-sitter flights. Particularly, an optimization-based trajectory planner for tail-sitters is proposed to design high-quality, smooth trajectories with consideration of kinodynamic constraints, singularity-free constraints and actuator saturation. The planned trajectory of flat output is transformed to state trajectory in real-time with consideration of wind in environments. To track the state trajectory, a global, singularity-free, and minimally-parameterized on-manifold MPC is developed, which fully leverages the accurate aerodynamic model to achieve high-accuracy trajectory tracking within the whole flight envelope. The effectiveness of the proposed framework is demonstrated through extensive real-world experiments in both indoor and outdoor field tests, including agile SE(3) flight through consecutive narrow windows requiring specific attitude and with speed up to 10m/s, typical tail-sitter maneuvers (transition, level flight and loiter) with speed up to 20m/s, and extremely aggressive aerobatic maneuvers (Wingover, Loop, Vertical Eight and Cuban Eight) with acceleration up to 2.5g.
translated by 谷歌翻译
跟踪控制一直是机器人技术的重要研究主题。本文为基于生物启发的神经动力学模型提供了一种新型的混合控制策略(UUV)。首先开发了增强的反向运动控制策略,以避免急速速度跳跃,并提供相对于常规方法的光滑速度命令。然后,提出了一种新颖的滑动模式控制,该控制能够提供平滑而连续的扭矩命令,没有颤动。在比较研究中,提出的合并混合控制策略确保了控制信号的平滑度,这在现实世界中至关重要,尤其是对于需要在复杂的水下环境中运行的无人水下车辆。
translated by 谷歌翻译
用于在线状态估计的随机过滤器是自治系统的核心技术。此类过滤器的性能是系统能力的关键限制因素之一。此类过滤器的渐近行为(例如,用于常规操作)和瞬态响应(例如,对于快速初始化和重置)对于保证自主系统的稳健操作至关重要。本文使用n个方向测量值(包括车身框架和参考框架方向类型测量值)引入了陀螺仪辅助姿态估计器的新通用公式。该方法基于一种集成状态公式,该公式结合了导航,所有方向传感器的外部校准以及在单个模棱两可的几何结构中的陀螺式偏置状态。这种新提出的对称性允许模块化的不同方向测量及其外部校准,同时保持在同一对称性中包括偏置态的能力。随后使用此对称性的基于滤波器的估计量明显改善了瞬态响应,与最新方法相比,渐近偏置和外部校准估计。估计器在统计代表性的模拟中得到了验证,并在现实世界实验中进行了测试。
translated by 谷歌翻译
在本文中,我们提出了一种新颖的观察者来解决视觉同时定位和映射(SLAM)的问题,仅使用来自单眼摄像机和惯性测量单元(IMU)的信息。系统状态在歧管$ se(3)\ times \ mathbb {r} ^ {3n} $上演变,我们在其中仔细设计动态扩展,以便产生不变的叶片,使得问题重新加入在线\ EMPH{常量参数}识别。然后,遵循最近引入的基于参数估计的观察者(PEBO)和动态回归扩展和混合(DREM)过程,我们提供了一个新的简单解决方案。值得注意的优点是,拟议的观察者保证了几乎全局渐近稳定性,既不需要激发的持久性也不是完全可观察性,然而,在大多数现有的工作中广泛采用了保证稳定性。
translated by 谷歌翻译