我们提出了一种神经动力构造(NDR),这是一种无模板的方法,可从单眼RGB-D摄像机中恢复动态场景的高保真几何形状和动作。在NDR中,我们采用神经隐式函数进行表面表示和渲染,使捕获的颜色和深度可以完全利用以共同优化表面和变形。为了表示和限制非刚性变形,我们提出了一种新型的神经可逆变形网络,以便自动满足任意两个帧之间的循环一致性。考虑到动态场景的表面拓扑可能会随着时间的流逝而发生变化,我们采用一种拓扑感知的策略来构建融合框架的拓扑变化对应关系。NDR还以全球优化的方式进一步完善了相机的姿势。公共数据集和我们收集的数据集的实验表明,NDR的表现优于现有的单眼动态重建方法。
translated by 谷歌翻译
铰接式3D形状重建的事先工作通常依赖于专用传感器(例如,同步的多摄像机系统)或预先构建的3D可变形模型(例如,Smal或SMPL)。这些方法无法在野外扩展到不同的各种物体。我们呈现Banmo,这是一种需要专用传感器的方法,也不需要预定义的模板形状。 Banmo在可怜的渲染框架中从许多单眼休闲视频中建立高保真,铰接式的3D模型(包括形状和动画皮肤的重量)。虽然许多视频的使用提供了更多的相机视图和对象关节的覆盖范围,但它们在建立不同背景,照明条件等方面建立了重大挑战。我们的主要洞察力是合并三所思想学校; (1)使用铰接骨骼和混合皮肤的经典可变形形状模型,(2)可容纳基于梯度的优化,(3)在像素之间产生对应关系的规范嵌入物模型。我们介绍了神经混合皮肤模型,可允许可微分和可逆的铰接变形。与规范嵌入式结合时,这些模型允许我们在跨越可通过循环一致性自我监督的视频中建立密集的对应。在真实和合成的数据集上,Banmo显示比人类和动物的先前工作更高保真3D重建,具有从新颖的观点和姿势的现实图像。项目网页:Banmo-www.github.io。
translated by 谷歌翻译
捕获一般的变形场景对于许多计算机图形和视觉应用至关重要,当只有单眼RGB视频可用时,这尤其具有挑战性。竞争方法假设密集的点轨道,3D模板,大规模训练数据集或仅捕获小规模的变形。与这些相反,我们的方法UB4D在挑战性的情况下超过了先前的艺术状态,而没有做出这些假设。我们的技术包括两个新的,在非刚性3D重建的背景下,组件,即1)1)针对非刚性场景的基于坐标的和隐性的神经表示,这使动态场景无偏重建,2)新颖的新颖。动态场景流量损失,可以重建较大的变形。我们的新数据集(将公开可用)的结果表明,就表面重建精度和对大变形的鲁棒性而言,对最新技术的明显改善。访问项目页面https://4dqv.mpi-inf.mpg.de/ub4d/。
translated by 谷歌翻译
Figure 1. Given a monocular image sequence, NR-NeRF reconstructs a single canonical neural radiance field to represent geometry and appearance, and a per-time-step deformation field. We can render the scene into a novel spatio-temporal camera trajectory that significantly differs from the input trajectory. NR-NeRF also learns rigidity scores and correspondences without direct supervision on either. We can use the rigidity scores to remove the foreground, we can supersample along the time dimension, and we can exaggerate or dampen motion.
translated by 谷歌翻译
我们向渲染和时间(4D)重建人类的渲染和时间(4D)重建的神经辐射场,通过稀疏的摄像机捕获或甚至来自单眼视频。我们的方法将思想与神经场景表示,新颖的综合合成和隐式统计几何人称的人类表示相结合,耦合使用新颖的损失功能。在先前使用符号距离功能表示的结构化隐式人体模型,而不是使用统一的占用率来学习具有统一占用的光域字段。这使我们能够从稀疏视图中稳健地融合信息,并概括超出在训练中观察到的姿势或视图。此外,我们应用几何限制以共同学习观察到的主题的结构 - 包括身体和衣服 - 并将辐射场正规化为几何合理的解决方案。在多个数据集上的广泛实验证明了我们方法的稳健性和准确性,其概括能力显着超出了一系列的姿势和视图,以及超出所观察到的形状的统计外推。
translated by 谷歌翻译
为了解决由单眼人类体积捕获中部分观察结果引起的不足问题,我们提出了Avatarcap,这是一个新颖的框架,该框架将可动画的化身引入了可见和不可见区域中高保真重建的捕获管道中。我们的方法首先为该主题创建一个可动画化的化身,从少量(〜20)的3D扫描作为先验。然后给出了该主题的单眼RGB视频,我们的方法集成了图像观察和头像先验的信息,因此无论可见性如何,都会重新构建具有动态细节的高保真3D纹理模型。为了学习有效的头像,仅从少数样品中捕获体积捕获,我们提出了GeoteXavatar,该地理Xavatar利用几何和纹理监督以分解的隐式方式限制了姿势依赖性动力学。进一步提出了一种涉及规范正常融合和重建网络的头像条件的体积捕获方法,以在观察到的区域和无形区域中整合图像观测和化身动力学,以整合图像观测和头像动力学。总体而言,我们的方法可以通过详细的和姿势依赖性动力学实现单眼人体体积捕获,并且实验表明我们的方法优于最新的最新状态。代码可在https://github.com/lizhe00/avatarcap上找到。
translated by 谷歌翻译
本文解决了从多视频视频中重建动画人类模型的挑战。最近的一些作品提出,将一个非刚性变形的场景分解为规范的神经辐射场和一组变形场,它们映射观察空间指向规范空间,从而使它们能够从图像中学习动态场景。但是,它们代表变形场作为转换矢量场或SE(3)字段,这使得优化高度不受限制。此外,这些表示无法通过输入动议明确控制。取而代之的是,我们基于线性混合剥皮算法引入了一个姿势驱动的变形场,该算法结合了混合重量场和3D人类骨架,以产生观察到的对应对应。由于3D人类骨骼更容易观察到,因此它们可以正规化变形场的学习。此外,可以通过输入骨骼运动来控制姿势驱动的变形场,以生成新的变形字段来动画规范人类模型。实验表明,我们的方法显着优于最近的人类建模方法。该代码可在https://zju3dv.github.io/animatable_nerf/上获得。
translated by 谷歌翻译
4D隐式表示中的最新进展集中在全球控制形状和运动的情况下,低维潜在向量,这很容易缺少表面细节和累积跟踪误差。尽管许多深层的本地表示显示了3D形状建模的有希望的结果,但它们的4D对应物尚不存在。在本文中,我们通过提出一个新颖的局部4D隐性代表来填补这一空白,以动态穿衣人,名为Lord,具有4D人类建模和局部代表的优点,并实现具有详细的表面变形的高保真重建,例如衣服皱纹。特别是,我们的主要见解是鼓励网络学习本地零件级表示的潜在代码,能够解释本地几何形状和时间变形。为了在测试时间进行推断,我们首先估计内部骨架运动在每个时间步中跟踪本地零件,然后根据不同类型的观察到的数据通过自动编码来优化每个部分的潜在代码。广泛的实验表明,该提出的方法具有强大的代表4D人类的能力,并且在实际应用上胜过最先进的方法,包括从稀疏点,非刚性深度融合(质量和定量)进行的4D重建。
translated by 谷歌翻译
最近,我们看到了照片真实的人类建模和渲染的神经进展取得的巨大进展。但是,将它们集成到现有的下游应用程序中的现有网络管道中仍然具有挑战性。在本文中,我们提出了一种全面的神经方法,用于从密集的多视频视频中对人类表演进行高质量重建,压缩和渲染。我们的核心直觉是用一系列高效的神经技术桥接传统的动画网格工作流程。我们首先引入一个神经表面重建器,以在几分钟内进行高质量的表面产生。它与多分辨率哈希编码的截短签名距离场(TSDF)的隐式体积渲染相结合。我们进一步提出了一个混合神经跟踪器来生成动画网格,该网格将明确的非刚性跟踪与自我监督框架中的隐式动态变形结合在一起。前者将粗糙的翘曲返回到规范空间中,而后者隐含的一个隐含物进一步预测了使用4D哈希编码的位移,如我们的重建器中。然后,我们使用获得的动画网格讨论渲染方案,从动态纹理到各种带宽设置下的Lumigraph渲染。为了在质量和带宽之间取得复杂的平衡,我们通过首先渲染6个虚拟视图来涵盖表演者,然后进行闭塞感知的神经纹理融合,提出一个分层解决方案。我们证明了我们方法在各种平台上的各种基于网格的应用程序和照片真实的自由观看体验中的功效,即,通过移动AR插入虚拟人类的表演,或通过移动AR插入真实环境,或带有VR头戴式的人才表演。
translated by 谷歌翻译
Humans constantly interact with objects in daily life tasks. Capturing such processes and subsequently conducting visual inferences from a fixed viewpoint suffers from occlusions, shape and texture ambiguities, motions, etc. To mitigate the problem, it is essential to build a training dataset that captures free-viewpoint interactions. We construct a dense multi-view dome to acquire a complex human object interaction dataset, named HODome, that consists of $\sim$75M frames on 10 subjects interacting with 23 objects. To process the HODome dataset, we develop NeuralDome, a layer-wise neural processing pipeline tailored for multi-view video inputs to conduct accurate tracking, geometry reconstruction and free-view rendering, for both human subjects and objects. Extensive experiments on the HODome dataset demonstrate the effectiveness of NeuralDome on a variety of inference, modeling, and rendering tasks. Both the dataset and the NeuralDome tools will be disseminated to the community for further development.
translated by 谷歌翻译
This paper presents an approach that reconstructs a hand-held object from a monocular video. In contrast to many recent methods that directly predict object geometry by a trained network, the proposed approach does not require any learned prior about the object and is able to recover more accurate and detailed object geometry. The key idea is that the hand motion naturally provides multiple views of the object and the motion can be reliably estimated by a hand pose tracker. Then, the object geometry can be recovered by solving a multi-view reconstruction problem. We devise an implicit neural representation-based method to solve the reconstruction problem and address the issues of imprecise hand pose estimation, relative hand-object motion, and insufficient geometry optimization for small objects. We also provide a newly collected dataset with 3D ground truth to validate the proposed approach.
translated by 谷歌翻译
综合照片 - 现实图像和视频是计算机图形的核心,并且是几十年的研究焦点。传统上,使用渲染算法(如光栅化或射线跟踪)生成场景的合成图像,其将几何形状和材料属性的表示为输入。统称,这些输入定义了实际场景和呈现的内容,并且被称为场景表示(其中场景由一个或多个对象组成)。示例场景表示是具有附带纹理的三角形网格(例如,由艺术家创建),点云(例如,来自深度传感器),体积网格(例如,来自CT扫描)或隐式曲面函数(例如,截短的符号距离)字段)。使用可分辨率渲染损耗的观察结果的这种场景表示的重建被称为逆图形或反向渲染。神经渲染密切相关,并将思想与经典计算机图形和机器学习中的思想相结合,以创建用于合成来自真实观察图像的图像的算法。神经渲染是朝向合成照片现实图像和视频内容的目标的跨越。近年来,我们通过数百个出版物显示了这一领域的巨大进展,这些出版物显示了将被动组件注入渲染管道的不同方式。这种最先进的神经渲染进步的报告侧重于将经典渲染原则与学习的3D场景表示结合的方法,通常现在被称为神经场景表示。这些方法的一个关键优势在于它们是通过设计的3D-一致,使诸如新颖的视点合成捕获场景的应用。除了处理静态场景的方法外,我们还涵盖了用于建模非刚性变形对象的神经场景表示...
translated by 谷歌翻译
在许多计算机视觉和图形应用程序中,从2D图像重建3D室内场景是一项重要任务。这项任务中的一个主要挑战是,典型的室内场景中的无纹理区域使现有方法难以产生令人满意的重建结果。我们提出了一种名为Neuris的新方法,以高质量地重建室内场景。 Neuris的关键思想是将估计的室内场景正常整合为神经渲染框架中的先验,以重建大型无纹理形状,并且重要的是,以适应性的方式进行此操作,以便重建不规则的形状,并具有很好的细节。 。具体而言,我们通过检查优化过程中重建的多视图一致性来评估正常先验的忠诚。只有被接受为忠实的正常先验才能用于3D重建,通常发生在平滑形状的区域中,可能具有弱质地。但是,对于那些具有小物体或薄结构的区域,普通先验通常不可靠,我们只能依靠输入图像的视觉特征,因为此类区域通常包含相对较丰富的视觉特征(例如,阴影变化和边界轮廓)。广泛的实验表明,在重建质量方面,Neuris明显优于最先进的方法。
translated by 谷歌翻译
Recent methods for neural surface representation and rendering, for example NeuS, have demonstrated remarkably high-quality reconstruction of static scenes. However, the training of NeuS takes an extremely long time (8 hours), which makes it almost impossible to apply them to dynamic scenes with thousands of frames. We propose a fast neural surface reconstruction approach, called NeuS2, which achieves two orders of magnitude improvement in terms of acceleration without compromising reconstruction quality. To accelerate the training process, we integrate multi-resolution hash encodings into a neural surface representation and implement our whole algorithm in CUDA. We also present a lightweight calculation of second-order derivatives tailored to our networks (i.e., ReLU-based MLPs), which achieves a factor two speed up. To further stabilize training, a progressive learning strategy is proposed to optimize multi-resolution hash encodings from coarse to fine. In addition, we extend our method for reconstructing dynamic scenes with an incremental training strategy. Our experiments on various datasets demonstrate that NeuS2 significantly outperforms the state-of-the-arts in both surface reconstruction accuracy and training speed. The video is available at https://vcai.mpi-inf.mpg.de/projects/NeuS2/ .
translated by 谷歌翻译
Figure 1: Our method can synthesize novel views in both space and time from a single monocular video of a dynamic scene. Here we show video results with various configurations of fixing and interpolating view and time (left), as well as a visualization of the recovered scene geometry (right). Please view with Adobe Acrobat or KDE Okular to see animations.
translated by 谷歌翻译
隐式辐射功能作为重建和渲染3D场景的照片真实观点的强大场景表示形式出现。但是,这些表示的编辑性差。另一方面,诸如多边形网格之类的显式表示允许易于编辑,但不适合重建动态的人头中的准确细节,例如精细的面部特征,头发,牙齿,牙齿和眼睛。在这项工作中,我们提出了神经参数化(NEP),这是一种混合表示,提供了隐式和显式方法的优势。 NEP能够进行照片真实的渲染,同时允许对场景的几何形状和外观进行细粒度编辑。我们首先通过将3D几何形状参数化为2D纹理空间来解开几何形状和外观。我们通过引入显式线性变形层来启用几何编辑性。变形由一组稀疏的密钥点控制,可以明确和直观地移位以编辑几何形状。对于外观,我们开发了一个混合2D纹理,该纹理由明确的纹理图组成,以易于编辑和隐式视图以及时间相关的残差,以建模时间和视图变化。我们将我们的方法与几个重建和编辑基线进行比较。结果表明,NEP在保持高编辑性的同时达到了几乎相同的渲染精度。
translated by 谷歌翻译
We address the problem of synthesizing novel views from a monocular video depicting a complex dynamic scene. State-of-the-art methods based on temporally varying Neural Radiance Fields (aka dynamic NeRFs) have shown impressive results on this task. However, for long videos with complex object motions and uncontrolled camera trajectories, these methods can produce blurry or inaccurate renderings, hampering their use in real-world applications. Instead of encoding the entire dynamic scene within the weights of an MLP, we present a new approach that addresses these limitations by adopting a volumetric image-based rendering framework that synthesizes new viewpoints by aggregating features from nearby views in a scene-motion-aware manner. Our system retains the advantages of prior methods in its ability to model complex scenes and view-dependent effects, but also enables synthesizing photo-realistic novel views from long videos featuring complex scene dynamics with unconstrained camera trajectories. We demonstrate significant improvements over state-of-the-art methods on dynamic scene datasets, and also apply our approach to in-the-wild videos with challenging camera and object motion, where prior methods fail to produce high-quality renderings. Our project webpage is at dynibar.github.io.
translated by 谷歌翻译
我们提出了一些动态神经辐射场(FDNERF),这是第一种基于NERF的方法,能够根据少量动态图像重建和表达3D面的表达编辑。与需要密集图像作为输入的现有动态NERF不同,并且只能为单个身份建模,我们的方法可以使跨不同人的不同人进行面对重建。与设计用于建模静态场景的最先进的几杆NERF相比,提出的FDNERF接受视图的动态输入,并支持任意的面部表达编辑,即产生具有输入超出输入的新表达式的面孔。为了处理动态输入之间的不一致之处,我们引入了精心设计的条件特征翘曲(CFW)模块,以在2D特征空间中执行表达条件的翘曲,这也是身份自适应和3D约束。结果,不同表达式的特征被转换为目标的特征。然后,我们根据这些视图一致的特征构建一个辐射场,并使用体积渲染来合成建模面的新型视图。进行定量和定性评估的广泛实验表明,我们的方法在3D面重建和表达编辑任务上都优于现有的动态和几乎没有射击的NERF。我们的代码和模型将在接受后提供。
translated by 谷歌翻译
我们提出了一个新颖的范式,该范式是通过单眼视频输入来构建可动画的3D人类代表,以便可以以任何看不见的姿势和观点呈现。我们的方法基于由基于网格的参数3D人类模型操纵的动态神经辐射场(NERF),该模型用作几何代理。以前的方法通常依靠多视频视频或准确的3D几何信息作为其他输入;此外,大多数方法在概括地看不见的姿势时会降解质量。我们确定概括的关键是查询动态NERF的良好输入嵌入:良好的输入嵌入应定义完整量化空间中的注入映射,并在姿势变化下表面网格变形引导。基于此观察结果,我们建议将输入查询嵌入其与局部表面区域的关系,并在网格顶点上跨越一组地球的最近邻居跨越。通过包括位置和相对距离信息,我们的嵌入式定义了距离保存的变形映射,并可以很好地概括为看不见的姿势。为了减少对其他输入的依赖性,我们首先使用现成的工具初始化人均3D网格,然后提出一条管道以共同优化NERF并完善初始网格。广泛的实验表明,我们的方法可以在看不见的姿势和观点下合成合理的人类渲染结果。
translated by 谷歌翻译
Neural radiance fields (NeRF) achieve highly photo-realistic novel-view synthesis, but it's a challenging problem to edit the scenes modeled by NeRF-based methods, especially for dynamic scenes. We propose editable neural radiance fields that enable end-users to easily edit dynamic scenes and even support topological changes. Input with an image sequence from a single camera, our network is trained fully automatically and models topologically varying dynamics using our picked-out surface key points. Then end-users can edit the scene by easily dragging the key points to desired new positions. To achieve this, we propose a scene analysis method to detect and initialize key points by considering the dynamics in the scene, and a weighted key points strategy to model topologically varying dynamics by joint key points and weights optimization. Our method supports intuitive multi-dimensional (up to 3D) editing and can generate novel scenes that are unseen in the input sequence. Experiments demonstrate that our method achieves high-quality editing on various dynamic scenes and outperforms the state-of-the-art. We will release our code and captured data.
translated by 谷歌翻译