诸如合并性和自动分化之类的属性使人工神经网络成为应用中普遍存在的工具。解决更具挑战性的问题导致神经网络逐渐变得更加复杂,因此很难从数学角度定义。我们提出了基于集成理论和参数跨度的概念的分类框架产生的线性层的一般定义。该定义概括并涵盖经典层(例如,密集,卷积),同时保证了层的衍生物对反向传播的存在和计算性。
translated by 谷歌翻译
We define the bicategory of Graph Convolutional Neural Networks $\mathbf{GCNN}_n$ for an arbitrary graph with $n$ nodes. We show it can be factored through the already existing categorical constructions for deep learning called $\mathbf{Para}$ and $\mathbf{Lens}$ with the base category set to the CoKleisli category of the product comonad. We prove that there exists an injective-on-objects, faithful 2-functor $\mathbf{GCNN}_n \to \mathbf{Para}(\mathsf{CoKl}(\mathbb{R}^{n \times n} \times -))$. We show that this construction allows us to treat the adjacency matrix of a GCNN as a global parameter instead of a a local, layer-wise one. This gives us a high-level categorical characterisation of a particular kind of inductive bias GCNNs possess. Lastly, we hypothesize about possible generalisations of GCNNs to general message-passing graph neural networks, connections to equivariant learning, and the (lack of) functoriality of activation functions.
translated by 谷歌翻译
深度神经网络被广泛用于解决多个科学领域的复杂问题,例如语音识别,机器翻译,图像分析。用于研究其理论特性的策略主要依赖于欧几里得的几何形状,但是在过去的几年中,已经开发了基于Riemannian几何形状的新方法。在某些开放问题的动机中,我们研究了歧管之间的特定地图序列,该序列的最后一个歧管配备了riemannian指标。我们研究了序列的其他歧管和某些相关商的结构引起的槽撤回。特别是,我们表明,最终的riemannian度量的回调到该序列的任何歧管是一个退化的riemannian度量,诱导了伪模空间的结构,我们表明,该伪仪的kolmogorov商均产生了平滑的歧管,这是基础的,这是基础,这是基础的基础。特定垂直束的空间。我们研究了此类序列图的理论属性,最终我们着重于实施实际关注神经网络的流形之间的地图,并介绍了本文第一部分中引入的几何框架的某些应用。
translated by 谷歌翻译
每个已知的人工深神经网络(DNN)都对应于规范Grothendieck的拓扑中的一个物体。它的学习动态对应于此拓扑中的形态流动。层中的不变结构(例如CNNS或LSTMS)对应于Giraud的堆栈。这种不变性应该是对概括属性的原因,即从约束下的学习数据中推断出来。纤维代表语义前类别(Culioli,Thom),在该类别上定义了人工语言,内部逻辑,直觉主义者,古典或线性(Girard)。网络的语义功能是其能够用这种语言表达理论的能力,以回答输出数据中有关输出的问题。语义信息的数量和空间是通过类比与2015年香农和D.Bennequin的Shannon熵的同源解释来定义的。他们概括了Carnap和Bar-Hillel(1952)发现的措施。令人惊讶的是,上述语义结构通过封闭模型类别的几何纤维对象进行了分类,然后它们产生了DNNS及其语义功能的同位不变。故意类型的理论(Martin-Loef)组织了这些物体和它们之间的纤维。 Grothendieck的导数分析了信息内容和交流。
translated by 谷歌翻译
我们基于功能分析中的分类结构开发了一种自动和符号分化的组成方法,其中衍生物是抽象向量上的线性函数,而不是限于标量,向量,矩阵或张力器,表示为多维阵列。我们表明,可以使用差分计算来实现符号和自动分化,以生成基于原始,恒定,线性和双线性函数的规则以及其顺序和并行组成的线性函数。线性函数以组合域特异性语言表示。最后,我们提供了一个微积分,用于象征性地计算衍生物的伴随,而无需使用矩阵,而矩阵过于效率低,无法在高维空间上使用。衍生物的最终符号表示保留了输入程序的数据并行操作。组合分化和计算形式的伴随的组合在行为上等同于反向模式自动分化。特别是,它为矩阵过于效率而无法表示线性功能的优化提供了机会。
translated by 谷歌翻译
在形状分析中,基本问题之一是在计算这些形状之间的(地球)距离之前对齐曲线或表面。为了找到最佳的重新训练,实现这种比对的是一项计算要求的任务,它导致了在差异组上的优化问题。在本文中,我们通过组成基本差异性来解决近似问题,构建了定向性扩散的近似值。我们提出了一种在Pytorch中实施的实用算法,该算法既适用于未参考的曲线和表面。我们得出了通用近似结果,并获得了获得的差异形态成分的Lipschitz常数的边界。
translated by 谷歌翻译
Many scientific fields study data with an underlying structure that is a non-Euclidean space. Some examples include social networks in computational social sciences, sensor networks in communications, functional networks in brain imaging, regulatory networks in genetics, and meshed surfaces in computer graphics. In many applications, such geometric data are large and complex (in the case of social networks, on the scale of billions), and are natural targets for machine learning techniques. In particular, we would like to use deep neural networks, which have recently proven to be powerful tools for a broad range of problems from computer vision, natural language processing, and audio analysis. However, these tools have been most successful on data with an underlying Euclidean or grid-like structure, and in cases where the invariances of these structures are built into networks used to model them.Geometric deep learning is an umbrella term for emerging techniques attempting to generalize (structured) deep neural models to non-Euclidean domains such as graphs and manifolds. The purpose of this paper is to overview different examples of geometric deep learning problems and present available solutions, key difficulties, applications, and future research directions in this nascent field.
translated by 谷歌翻译
Using tools from topology and functional analysis, we provide a framework where artificial neural networks, and their architectures, can be formally described. We define the notion of machine in a general topological context and show how simple machines can be combined into more complex ones. We explore finite- and infinite-depth machines, which generalize neural networks and neural ordinary differential equations. Borrowing ideas from functional analysis and kernel methods, we build complete, normed, infinite-dimensional spaces of machines, and we discuss how to find optimal architectures and parameters -- within those spaces -- to solve a given computational problem. In our numerical experiments, these kernel-inspired networks can outperform classical neural networks when the training dataset is small.
translated by 谷歌翻译
本文通过引入几何深度学习(GDL)框架来构建通用馈电型型模型与可区分的流形几何形状兼容的通用馈电型模型,从而解决了对非欧国人数据进行处理的需求。我们表明,我们的GDL模型可以在受控最大直径的紧凑型组上均匀地近似任何连续目标函数。我们在近似GDL模型的深度上获得了最大直径和上限的曲率依赖性下限。相反,我们发现任何两个非分类紧凑型歧管之间始终都有连续的函数,任何“局部定义”的GDL模型都不能均匀地近似。我们的最后一个主要结果确定了数据依赖性条件,确保实施我们近似的GDL模型破坏了“维度的诅咒”。我们发现,任何“现实世界”(即有限)数据集始终满足我们的状况,相反,如果目标函数平滑,则任何数据集都满足我们的要求。作为应用,我们确认了以下GDL模型的通用近似功能:Ganea等。 (2018)的双波利馈电网络,实施Krishnan等人的体系结构。 (2015年)的深卡尔曼 - 滤波器和深度玛克斯分类器。我们构建了:Meyer等人的SPD-Matrix回归剂的通用扩展/变体。 (2011)和Fletcher(2003)的Procrustean回归剂。在欧几里得的环境中,我们的结果暗示了Kidger和Lyons(2020)的近似定理和Yarotsky和Zhevnerchuk(2019)无估计近似率的数据依赖性版本的定量版本。
translated by 谷歌翻译
我们介绍了CheBlieset,一种对(各向异性)歧管的组成的方法。对基于GRAP和基于组的神经网络的成功进行冲浪,我们利用了几何深度学习领域的最新发展,以推导出一种新的方法来利用数据中的任何各向异性。通过离散映射的谎言组,我们开发由各向异性卷积层(Chebyshev卷积),空间汇集和解凝层制成的图形神经网络,以及全球汇集层。集团的标准因素是通过具有各向异性左不变性的黎曼距离的图形上的等级和不变的运算符来实现的。由于其简单的形式,Riemannian公制可以在空间和方向域中模拟任何各向异性。这种对Riemannian度量的各向异性的控制允许平衡图形卷积层的不变性(各向异性度量)的平衡(各向异性指标)。因此,我们打开大门以更好地了解各向异性特性。此外,我们经验证明了在CIFAR10上的各向异性参数的存在(数据依赖性)甜点。这一关键的结果是通过利用数据中的各向异性属性来获得福利的证据。我们还评估了在STL10(图像数据)和ClimateNet(球面数据)上的这种方法的可扩展性,显示了对不同任务的显着适应性。
translated by 谷歌翻译
神经网络的经典发展主要集中在有限维欧基德空间或有限组之间的学习映射。我们提出了神经网络的概括,以学习映射无限尺寸函数空间之间的运算符。我们通过一类线性积分运算符和非线性激活函数的组成制定运营商的近似,使得组合的操作员可以近似复杂的非线性运算符。我们证明了我们建筑的普遍近似定理。此外,我们介绍了四类运算符参数化:基于图形的运算符,低秩运算符,基于多极图形的运算符和傅里叶运算符,并描述了每个用于用每个计算的高效算法。所提出的神经运营商是决议不变的:它们在底层函数空间的不同离散化之间共享相同的网络参数,并且可以用于零击超分辨率。在数值上,与现有的基于机器学习的方法,达西流程和Navier-Stokes方程相比,所提出的模型显示出卓越的性能,而与传统的PDE求解器相比,与现有的基于机器学习的方法有关的基于机器学习的方法。
translated by 谷歌翻译
由Spivak和Fong和Cruttwell等人的基础作品的启发,我们介绍了一个分类的框架来形式化贝叶斯推断和学习。在这里玩的两个关键想法是Cruttwell等人建造的贝叶斯反转和仿函数的概念。在这种情况下,我们发现贝叶斯学习是学习范例的最简单案例。然后,我们获得批量和顺序贝叶斯更新的分类配方,同时还验证了两个在特定示例中一致。
translated by 谷歌翻译
光学和镜头是抽象的分类小工具,它们以双向数据流对系统进行建模。在本文中,我们观察到,光学的表示定义(通过从外部观察它们的行为来识别两个光学的定义 - 不适用于操作,面向软件的方法,不仅可以观察到光学,而且还要构建其内部设置。我们确定了笛卡尔光学和镜头的表示异构类别之间的操作差异:它们的不同组成规则和相应的时空权衡,将它们定位在光谱的两个相对端。通过这些动机,我们将现有的分类结构及其关系提升到了两类水平,表明相关的操作问题变得可见。我们定义2类别$ \ textbf {2-optic}(\ Mathcal {c})$,其2细胞明确跟踪Optics的内部配置。我们显示1类别$ \ textbf {Optic}(\ Mathcal {c})$通过本地列出此2类别的连接组件而产生。我们表明,将镜头嵌入到笛卡尔光学器件中的渗透器从函子削弱到oplax函子,其oplaxator现在检测到不同的组成规则。我们确定显示该函子在任何标准2类中构成邻接的一部分的困难。我们确定了一个猜想,即笛卡尔透镜和光学之间的众所周知的同构是由于其双分类对应物之间的LAX 2-插条而产生的。除了介绍新研究外,本文还旨在对该主题进行访问。
translated by 谷歌翻译
我们使用fr \'echet演算介绍了前馈神经网络梯度的推导,这比文献中通常呈现的梯度更紧凑。我们首先得出了在矢量数据上工作的普通神经网络的梯度,并展示如何使用这些派生公式来得出一种简单有效的算法来计算神经网络梯度。随后,我们展示了我们的分析如何推广到更通用的神经网络架构,包括但不限于卷积网络。
translated by 谷歌翻译
潜在变量模型(LVM)的无监督学习被广泛用于表示机器学习中的数据。当这样的模型反映了地面真理因素和将它们映射到观察的机制时,有理由期望它们允许在下游任务中进行概括。但是,众所周知,如果不在模型类上施加限制,通常无法实现此类可识别性保证。非线性独立组件分析是如此,其中LVM通过确定性的非线性函数将统计上独立的变量映射到观察。几个伪造解决方案的家庭完全适合数据,但是可以在通用环境中构建与地面真相因素相对应的。但是,最近的工作表明,限制此类模型的功能类别可能会促进可识别性。具体而言,已经提出了在Jacobian矩阵中收集的部分衍生物的函数类,例如正交坐标转换(OCT),它们强加了Jacobian柱的正交性。在目前的工作中,我们证明了这些转换的子类,共形图,是可识别的,并提供了新颖的理论结果,这表明OCT具有防止虚假解决方案家族在通用环境中破坏可识别性的特性。
translated by 谷歌翻译
高斯工艺是能够以代表不确定性的方式学习未知功能的机器学习模型,从而促进了最佳决策系统的构建。由于渴望部署新颖的科学领域的高斯过程,一种迅速增长的研究线路集中于建设性地扩展这些模型来处理非欧几里德域,包括黎曼歧管,例如球形和托尔。我们提出了概括这一类的技术,以模拟黎曼歧管上的矢量字段,这在物理科学中的许多应用领域都很重要。为此,我们介绍了构建规范独立核的一般配方,它诱导高斯矢量字段,即矢量值高斯工艺与几何形状相干,从标量值riemannian内核。我们扩展了标准高斯过程培训方法,例如变分推理,以此设置。这使得旨在使用标准方法培训的Riemannian歧管上的矢量值高斯流程,并使它们可以访问机器学习从业者。
translated by 谷歌翻译
在以前的工作中,我们提出了一种学习深层神经网络的几何框架,作为歧管之间的地图序列,采用奇异的黎曼几何形状。在本文中,我们介绍了该框架的应用,提出了一种建立输入点的等价等级的方法:将这种类定义为输入歧管上的点上的点,由神经网络映射到相同的输出。换句话说,我们在输入空间中构建输出歧管中的点的预测。特别是。我们在N维实际空间的神经网络映射到(N-1) - 二维实际空间的情况下,我们专注于简单,我们提出了一种算法,允许构建位于同一类等效等级的一组点。这种方法导致两个主要应用:新的合成数据的产生,它可以对分类器如何通过输入数据的小扰动来混淆一些洞察(例如,分类为包含奇瓦瓦狗的图像)。此外,对于从2D到1D实际空间的神经网络,我们还讨论了如何找到实际线路的封闭间隔的疑望。我们还提供了一些具有训练的神经网络的数值实验,以执行非线性回归任务,包括二进制分类器的情况。
translated by 谷歌翻译
Several problems in stochastic analysis are defined through their geometry, and preserving that geometric structure is essential to generating meaningful predictions. Nevertheless, how to design principled deep learning (DL) models capable of encoding these geometric structures remains largely unknown. We address this open problem by introducing a universal causal geometric DL framework in which the user specifies a suitable pair of geometries $\mathscr{X}$ and $\mathscr{Y}$ and our framework returns a DL model capable of causally approximating any ``regular'' map sending time series in $\mathscr{X}^{\mathbb{Z}}$ to time series in $\mathscr{Y}^{\mathbb{Z}}$ while respecting their forward flow of information throughout time. Suitable geometries on $\mathscr{Y}$ include various (adapted) Wasserstein spaces arising in optimal stopping problems, a variety of statistical manifolds describing the conditional distribution of continuous-time finite state Markov chains, and all Fr\'echet spaces admitting a Schauder basis, e.g. as in classical finance. Suitable, $\mathscr{X}$ are any compact subset of any Euclidean space. Our results all quantitatively express the number of parameters needed for our DL model to achieve a given approximation error as a function of the target map's regularity and the geometric structure both of $\mathscr{X}$ and of $\mathscr{Y}$. Even when omitting any temporal structure, our universal approximation theorems are the first guarantees that H\"older functions, defined between such $\mathscr{X}$ and $\mathscr{Y}$ can be approximated by DL models.
translated by 谷歌翻译
有条件的独立性已被广泛用于AI,因果推理,机器学习和统计数据。我们介绍分类生物,这是一种代数结构,用于表征条件独立性的普遍特性。分类物被定义为两个类别的混合体:一个编码由对象和箭头定义的预订的晶格结构;第二个二个参数化涉及定义​​条件独立性结构的三角体对象和形态,桥梁形态提供了二进制和三元结构之间的接口。我们使用公理集的三个众所周知的示例来说明分类生物:绘画,整数价值多组和分离型。 FOUNDOROIDS将一个分类型映射到另一个分类,从而保留了由共同域中所有三种类型的箭头定义的关系。我们描述了跨官能素的自然转化,该函数是跨常规物体和三角形对象的自然变化,以构建条件独立性的通用表示。我们使用分类器之间的辅助和单核,以抽象地表征条件独立性的图形和非图形表示的忠诚。
translated by 谷歌翻译
标准情况被出现为对构成组的身份保留转换的物体表示的理想性质,例如翻译和旋转。然而,由组标准规定的表示的表示的表现仍然不完全理解。我们通过提供封面函数计数定理的概括来解决这个差距,这些定理量化了可以分配给物体的等异点的线性可分离和组不变二进制二分层的数量。我们发现可分离二分法的分数由由组动作固定的空间的尺寸决定。我们展示了该关系如何扩展到卷积,元素 - 明智的非线性和全局和本地汇集等操作。虽然其他操作不会改变可分离二分法的分数,但尽管是高度非线性操作,但是局部汇集减少了分数。最后,我们在随机初始化和全培训的卷积神经网络的中间代表中测试了我们的理论,并找到了完美的协议。
translated by 谷歌翻译