Neural Representations have recently been shown to effectively reconstruct a wide range of signals from 3D meshes and shapes to images and videos. We show that, when adapted correctly, neural representations can be used to directly represent the weights of a pre-trained convolutional neural network, resulting in a Neural Representation for Neural Networks (NeRN). Inspired by coordinate inputs of previous neural representation methods, we assign a coordinate to each convolutional kernel in our network based on its position in the architecture, and optimize a predictor network to map coordinates to their corresponding weights. Similarly to the spatial smoothness of visual scenes, we show that incorporating a smoothness constraint over the original network's weights aids NeRN towards a better reconstruction. In addition, since slight perturbations in pre-trained model weights can result in a considerable accuracy loss, we employ techniques from the field of knowledge distillation to stabilize the learning process. We demonstrate the effectiveness of NeRN in reconstructing widely used architectures on CIFAR-10, CIFAR-100, and ImageNet. Finally, we present two applications using NeRN, demonstrating the capabilities of the learned representations.
translated by 谷歌翻译
We present a novel method to provide efficient and highly detailed reconstructions. Inspired by wavelets, our main idea is to learn a neural field that decompose the signal both spatially and frequency-wise. We follow the recent grid-based paradigm for spatial decomposition, but unlike existing work, encourage specific frequencies to be stored in each grid via Fourier features encodings. We then apply a multi-layer perceptron with sine activations, taking these Fourier encoded features in at appropriate layers so that higher-frequency components are accumulated on top of lower-frequency components sequentially, which we sum up to form the final output. We demonstrate that our method outperforms the state of the art regarding model compactness and efficiency on multiple tasks: 2D image fitting, 3D shape reconstruction, and neural radiance fields.
translated by 谷歌翻译
Although considerable progress has been obtained in neural network quantization for efficient inference, existing methods are not scalable to heterogeneous devices as one dedicated model needs to be trained, transmitted, and stored for one specific hardware setting, incurring considerable costs in model training and maintenance. In this paper, we study a new vertical-layered representation of neural network weights for encapsulating all quantized models into a single one. With this representation, we can theoretically achieve any precision network for on-demand service while only needing to train and maintain one model. To this end, we propose a simple once quantization-aware training (QAT) scheme for obtaining high-performance vertical-layered models. Our design incorporates a cascade downsampling mechanism which allows us to obtain multiple quantized networks from one full precision source model by progressively mapping the higher precision weights to their adjacent lower precision counterparts. Then, with networks of different bit-widths from one source model, multi-objective optimization is employed to train the shared source model weights such that they can be updated simultaneously, considering the performance of all networks. By doing this, the shared weights will be optimized to balance the performance of different quantized models, thus making the weights transferable among different bit widths. Experiments show that the proposed vertical-layered representation and developed once QAT scheme are effective in embodying multiple quantized networks into a single one and allow one-time training, and it delivers comparable performance as that of quantized models tailored to any specific bit-width. Code will be available.
translated by 谷歌翻译
为了以计算有效的方式部署深层模型,经常使用模型量化方法。此外,由于新的硬件支持混合的位算术操作,最近对混合精度量化(MPQ)的研究开始通过搜索网络中不同层和模块的优化位低宽,从而完全利用表示的能力。但是,先前的研究主要是在使用强化学习,神经体系结构搜索等的昂贵方案中搜索MPQ策略,或者简单地利用部分先验知识来进行位于刻度分配,这可能是有偏见和优势的。在这项工作中,我们提出了一种新颖的随机量化量化(SDQ)方法,该方法可以在更灵活,更全球优化的空间中自动学习MPQ策略,并具有更平滑的梯度近似。特别是,可区分的位宽参数(DBP)被用作相邻位意选择之间随机量化的概率因素。在获取最佳MPQ策略之后,我们将进一步训练网络使用熵感知的bin正则化和知识蒸馏。我们广泛评估了不同硬件(GPU和FPGA)和数据集的多个网络的方法。 SDQ的表现优于所有最先进的混合或单个精度量化,甚至比较低的位置量化,甚至比各种重新网络和Mobilenet家族的全精度对应物更好,这表明了我们方法的有效性和优势。
translated by 谷歌翻译
While machine learning is traditionally a resource intensive task, embedded systems, autonomous navigation, and the vision of the Internet of Things fuel the interest in resource-efficient approaches. These approaches aim for a carefully chosen trade-off between performance and resource consumption in terms of computation and energy. The development of such approaches is among the major challenges in current machine learning research and key to ensure a smooth transition of machine learning technology from a scientific environment with virtually unlimited computing resources into everyday's applications. In this article, we provide an overview of the current state of the art of machine learning techniques facilitating these real-world requirements. In particular, we focus on deep neural networks (DNNs), the predominant machine learning models of the past decade. We give a comprehensive overview of the vast literature that can be mainly split into three non-mutually exclusive categories: (i) quantized neural networks, (ii) network pruning, and (iii) structural efficiency. These techniques can be applied during training or as post-processing, and they are widely used to reduce the computational demands in terms of memory footprint, inference speed, and energy efficiency. We also briefly discuss different concepts of embedded hardware for DNNs and their compatibility with machine learning techniques as well as potential for energy and latency reduction. We substantiate our discussion with experiments on well-known benchmark datasets using compression techniques (quantization, pruning) for a set of resource-constrained embedded systems, such as CPUs, GPUs and FPGAs. The obtained results highlight the difficulty of finding good trade-offs between resource efficiency and predictive performance.
translated by 谷歌翻译
深度学习技术在各种任务中都表现出了出色的有效性,并且深度学习具有推进多种应用程序(包括在边缘计算中)的潜力,其中将深层模型部署在边缘设备上,以实现即时的数据处理和响应。一个关键的挑战是,虽然深层模型的应用通常会产生大量的内存和计算成本,但Edge设备通常只提供非常有限的存储和计算功能,这些功能可能会在各个设备之间差异很大。这些特征使得难以构建深度学习解决方案,以释放边缘设备的潜力,同时遵守其约束。应对这一挑战的一种有希望的方法是自动化有效的深度学习模型的设计,这些模型轻巧,仅需少量存储,并且仅产生低计算开销。该调查提供了针对边缘计算的深度学习模型设计自动化技术的全面覆盖。它提供了关键指标的概述和比较,这些指标通常用于量化模型在有效性,轻度和计算成本方面的水平。然后,该调查涵盖了深层设计自动化技术的三类最新技术:自动化神经体系结构搜索,自动化模型压缩以及联合自动化设计和压缩。最后,调查涵盖了未来研究的开放问题和方向。
translated by 谷歌翻译
嵌入大而冗余的数据,例如图像或文本,在较低维空间的层次结构中是表示方法的关键特征之一,如今,这些特征是一旦相信困难或不可能的问题,这些方法就可以为问题提供最新的解决方案解决。在这项工作中,在具有强大元回味的情节扭转中,我们展示了受过训练的深层模型与它们优化的数据一样多余,因此如何使用深度学习模型来嵌入深度学习模型。特别是,我们表明可以使用表示形式学习来学习经过训练的深层模型的固定大小,低维的嵌入空间,并且可以通过插值或优化来探索此类空间,以实现现成的模型。我们发现,可以学习相同体系结构和多个体系结构的多个实例的嵌入空间。我们解决了信号的图像分类和神经表示,表明如何学习我们的嵌入空间,以分别捕获性能和3D形状的概念。在多架结构的环境中,我们还展示了仅在架构子集中训练的嵌入方式如何才能学会生成已经训练的架构实例,从未在培训时看到实例化。
translated by 谷歌翻译
我们提出了一个小说嵌入字段\ emph {pref}作为促进神经信号建模和重建任务的紧凑表示。基于纯的多层感知器(MLP)神经技术偏向低频信号,并依赖于深层或傅立叶编码以避免丢失细节。取而代之的是,基于傅立叶嵌入空间的相拟合公式,PREF采用了紧凑且物理上解释的编码场。我们进行全面的实验,以证明PERF比最新的空间嵌入技术的优势。然后,我们使用近似的逆傅里叶变换方案以及新型的parseval正常器来开发高效的频率学习框架。广泛的实验表明,我们的高效和紧凑的基于频率的神经信号处理技术与2D图像完成,3D SDF表面回归和5D辐射场现场重建相同,甚至比最新的。
translated by 谷歌翻译
Despite the fact that deep neural networks are powerful models and achieve appealing results on many tasks, they are too large to be deployed on edge devices like smartphones or embedded sensor nodes. There have been efforts to compress these networks, and a popular method is knowledge distillation, where a large (teacher) pre-trained network is used to train a smaller (student) network. However, in this paper, we show that the student network performance degrades when the gap between student and teacher is large. Given a fixed student network, one cannot employ an arbitrarily large teacher, or in other words, a teacher can effectively transfer its knowledge to students up to a certain size, not smaller. To alleviate this shortcoming, we introduce multi-step knowledge distillation, which employs an intermediate-sized network (teacher assistant) to bridge the gap between the student and the teacher. Moreover, we study the effect of teacher assistant size and extend the framework to multi-step distillation. Theoretical analysis and extensive experiments on CIFAR-10,100 and ImageNet datasets and on CNN and ResNet architectures substantiate the effectiveness of our proposed approach.
translated by 谷歌翻译
卷积神经网络(CNN)压缩对于在资源有限的边缘设备中部署这些模型至关重要。 CNN的现有通道修剪算法在复杂模型上取得了很大的成功。他们从各个角度解决了修剪问题,并使用不同的指标来指导修剪过程。但是,这些指标主要集中于模型的“输出”或“权重”,而忽略了其“解释”信息。为了填补这一空白,我们建议通过利用模型的解释来引导修剪过程,从而从新颖的角度解决通道修剪问题,从而利用来自模型的输入和输出的信息。但是,现有的解释方法不能被部署以实现我们的目标,因为它们的修剪效率低下,或者可能预测了非固定解释。我们通过引入选择器模型来解决这一挑战,该模型可以预测修剪模型的实时平滑显着性掩码。我们通过径向基函数(RBF)函数来参数化解释性掩码的分布,以在我们选择器模型的电感偏置中纳入自然图像的几何事物。因此,我们可以获得解释的紧凑表示,以降低修剪方法的计算成本。我们利用我们的选择器模型来引导网络修剪,以最大程度地提高修剪和原始模型的解释性表示的相似性。关于CIFAR-10和Imagenet基准数据集的广泛实验证明了我们提出的方法的功效。我们的实现可在\ url {https://github.com/alii-ganjj/interpretationssteerpruning}中获得
translated by 谷歌翻译
最近隐含的神经表示(INRS)作为各种数据类型的新颖且有效的表现。到目前为止,事先工作主要集中在优化其重建性能。这项工作从新颖的角度来调查INRS,即作为图像压缩的工具。为此,我们提出了基于INR的第一综合压缩管线,包括量化,量化感知再培训和熵编码。使用INRS进行编码,即对数据示例的过度装备,通常是较慢的秩序。为缓解此缺点,我们基于MAML利用META学习初始化,以便在较少的渐变更新中达到编码,这也通常提高INR的速率失真性能。我们发现,我们对INR的源压缩方法非常优于类似的事先工作,具有专门针对图像专门设计的常见压缩算法,并将基于速率 - 失真自动分析器的差距缩小到最先进的学习方法。此外,我们提供了对我们希望促进这种新颖方法对图像压缩的未来研究的重要性的广泛消融研究。
translated by 谷歌翻译
给定模型动物园的神经网络权重的学习表示是一个新兴而具有挑战性的领域,从模型检查到神经体系结构搜索或知识蒸馏,具有许多潜在的应用。最近,在模型动物园进行训练的自动编码器能够学习一个超代理,该代表体捕获了动物园中模型的内在和外在特性。在这项工作中,我们扩展了超代表,以供生成使用以采样新的模型权重。我们提出的是层损失归一化,我们证明,这是基于超代表拓扑生成高性能模型和几种采样方法的关键。使用我们的方法生成的模型是多种多样的,性能的,并且能够超过强大的基准,从而在下游任务上进行了评估:初始化,合奏采样和传递学习。我们的结果表明,通过超代理通过过度代理,知识聚集从模型动物园到新模型的潜力,从而为新的研究方向铺平了途径。
translated by 谷歌翻译
神经场通过将坐标输入映射到采样值来模型信号。从视觉,图形到生物学和天文学的许多领域,它们正成为越来越重要的主链体系结构。在本文中,我们探讨了这些网络中常见的调理机制之间的差异,这是将神经场从信号的记忆转移到概括的基本要素,其中共同建模了位于歧管上的一组信号。特别是,我们对这些机制的缩放行为感兴趣,以对日益高维的调理变量感兴趣。正如我们在实验中显示的那样,高维条件是建模复杂数据分布的关键,因此,确定哪种体系结构在处理此类问题时最能实现哪种选择。为此,我们运行了使用串联,超网络和基于注意力的调理策略对2D,3D和4D信号进行建模的实验,这是文献中尚未进行的必要但费力的努力。我们发现,基于注意力的条件在各种环境中的其他方法都优于其他方法。
translated by 谷歌翻译
深度神经网络(DNN)的记录断裂性能具有沉重的参数化,导致外部动态随机存取存储器(DRAM)进行存储。 DRAM访问的禁用能量使得在资源受限的设备上部署DNN是不普遍的,呼叫最小化重量和数据移动以提高能量效率。我们呈现SmartDeal(SD),算法框架,以进行更高成本的存储器存储/访问的较低成本计算,以便在推理和培训中积极提高存储和能量效率。 SD的核心是一种具有结构约束的新型重量分解,精心制作以释放硬件效率潜力。具体地,我们将每个重量张量分解为小基矩阵的乘积以及大的结构稀疏系数矩阵,其非零被量化为-2的功率。由此产生的稀疏和量化的DNN致力于为数据移动和重量存储而大大降低的能量,因为由于稀疏的比特 - 操作和成本良好的计算,恢复原始权重的最小开销。除了推理之外,我们采取了另一次飞跃来拥抱节能培训,引入创新技术,以解决培训时出现的独特障碍,同时保留SD结构。我们还设计专用硬件加速器,充分利用SD结构来提高实际能源效率和延迟。我们在不同的设置中对多个任务,模型和数据集进行实验。结果表明:1)应用于推理,SD可实现高达2.44倍的能效,通过实际硬件实现评估; 2)应用于培训,储存能量降低10.56倍,减少了10.56倍和4.48倍,与最先进的训练基线相比,可忽略的准确性损失。我们的源代码在线提供。
translated by 谷歌翻译
二进制神经网络(BNNS)已经证明了它们能够以可比精度(DNNS)的准确性来解决复杂任务的能力,同时还降低了计算能力和存储要求并提高处理速度。这些属性使它们成为开发和部署基于DNN的应用程序(IOT)设备的吸引人的替代方法。尽管最近有所改善,但它们的压缩因素可能会导致一些资源非常有限的设备可能导致不足。在这项工作中,我们提出了稀疏的二进制神经网络(SBNNS),这是一种新颖的模型和训练方案,它引入了BNN中的稀疏性和一种新的量化函数,以使网络的权重进行二进制。提出的SBNN能够达到高压因子,并减少了推理时的操作和参数数量。我们还提供工具来协助SBNN设计,同时尊重硬件资源约束。我们通过三个数据集的线性和卷积网络上的一组实验来研究我们方法对不同压缩因子的概括属性。我们的实验证实,SBNNS可以达到高压缩率,而不会损害概括,同时进一步降低了BNNS的操作,使SBNNS成为以廉价,低成本,限量资源的IOT设备和传感器部署DNN的可行选择。
translated by 谷歌翻译
It is common practice in deep learning to represent a measurement of the world on a discrete grid, e.g. a 2D grid of pixels. However, the underlying signal represented by these measurements is often continuous, e.g. the scene depicted in an image. A powerful continuous alternative is then to represent these measurements using an implicit neural representation, a neural function trained to output the appropriate measurement value for any input spatial location. In this paper, we take this idea to its next level: what would it take to perform deep learning on these functions instead, treating them as data? In this context we refer to the data as functa, and propose a framework for deep learning on functa. This view presents a number of challenges around efficient conversion from data to functa, compact representation of functa, and effectively solving downstream tasks on functa. We outline a recipe to overcome these challenges and apply it to a wide range of data modalities including images, 3D shapes, neural radiance fields (NeRF) and data on manifolds. We demonstrate that this approach has various compelling properties across data modalities, in particular on the canonical tasks of generative modeling, data imputation, novel view synthesis and classification. Code: https://github.com/deepmind/functa
translated by 谷歌翻译
In recent years, Siamese network based trackers have significantly advanced the state-of-the-art in real-time tracking. Despite their success, Siamese trackers tend to suffer from high memory costs, which restrict their applicability to mobile devices with tight memory budgets. To address this issue, we propose a distilled Siamese tracking framework to learn small, fast and accurate trackers (students), which capture critical knowledge from large Siamese trackers (teachers) by a teacher-students knowledge distillation model. This model is intuitively inspired by the one teacher vs. multiple students learning method typically employed in schools. In particular, our model contains a single teacher-student distillation module and a student-student knowledge sharing mechanism. The former is designed using a tracking-specific distillation strategy to transfer knowledge from a teacher to students. The latter is utilized for mutual learning between students to enable in-depth knowledge understanding. Extensive empirical evaluations on several popular Siamese trackers demonstrate the generality and effectiveness of our framework. Moreover, the results on five tracking benchmarks show that the proposed distilled trackers achieve compression rates of up to 18$\times$ and frame-rates of $265$ FPS, while obtaining comparable tracking accuracy compared to base models.
translated by 谷歌翻译
Transferring knowledge from a teacher neural network pretrained on the same or a similar task to a student neural network can significantly improve the performance of the student neural network. Existing knowledge transfer approaches match the activations or the corresponding handcrafted features of the teacher and the student networks. We propose an information-theoretic framework for knowledge transfer which formulates knowledge transfer as maximizing the mutual information between the teacher and the student networks. We compare our method with existing knowledge transfer methods on both knowledge distillation and transfer learning tasks and show that our method consistently outperforms existing methods. We further demonstrate the strength of our method on knowledge transfer across heterogeneous network architectures by transferring knowledge from a convolutional neural network (CNN) to a multi-layer perceptron (MLP) on CIFAR-10. The resulting MLP significantly outperforms the-state-of-the-art methods and it achieves similar performance to the CNN with a single convolutional layer. * Contributed during an internship at Amazon.
translated by 谷歌翻译
隐式神经表示(INR)使用多层的感知来代表低维问题域中的高频函数。最近,这些表示在与复杂的3D对象和场景相关的任务上实现了最先进的结果。核心问题是高度详细信号的表示,其使用具有周期性激活功能(警报器)的网络来解决或将傅立叶映射应用于输入。这项工作分析了两种方法之间的连接,并表明傅里叶映射的Perceptron在结构上像一个隐藏层警报器。此外,我们确定先前提出的傅里叶映射与一般D维傅里叶系列之间的关系,导致整数晶格映射。此外,我们修改了渐进式培训策略,以便在任意傅里叶映射上工作,并表明它提高了插值任务的泛化。最后,我们比较图像回归和新颖观看综合任务的不同映射。我们确认前面发现映射性能的主要贡献者是其元素的嵌入和标准偏差的大小。
translated by 谷歌翻译
深神经网络(DNN)的庞大计算和记忆成本通常排除了它们在资源约束设备中的使用。将参数和操作量化为较低的位精确,为神经网络推断提供了可观的记忆和能量节省,从而促进了在边缘计算平台上使用DNN。量化DNN的最新努力采用了一系列技术,包括渐进式量化,步进尺寸的适应性和梯度缩放。本文提出了一种针对边缘计算的混合精度卷积神经网络(CNN)的新量化方法。我们的方法在模型准确性和内存足迹上建立了一个新的Pareto前沿,展示了一系列量化模型,可提供低于4.3 MB的权重(WGTS。)和激活(ACTS。)。我们的主要贡献是:(i)用张量学的学习精度,(ii)WGTS的靶向梯度修饰,(i)硬件感知的异质可区分量化。和行为。为了减轻量化错误,以及(iii)多相学习时间表,以解决从更新到学习的量化器和模型参数引起的学习不稳定性。我们证明了我们的技术在Imagenet数据集上的有效性,包括高效网络lite0(例如,WGTS。的4.14MB和ACTS。以67.66%的精度)和MobilenEtV2(例如3.51MB WGTS。 % 准确性)。
translated by 谷歌翻译