插槽填充和意图检测是诸如语音助手的会话代理的骨干,是有效的研究领域。尽管公开的基准上的最先进的技术,但令人印象深刻的性能,他们概括到现实情景的能力尚未得到证明。在这项工作中,我们提出了一种自然,一套简单的口语导向转换,应用于数据集的评估集,在保留话语的语义时引入人类口语变化。我们将大自然应用于共同的插槽填充和意图检测基准,并证明了自然集合的标准评估的简单扰动可以显着降低模型性能。通过我们的实验,我们证明了当自然运营商应用于评估流行基准的评估集时,模型精度可以降低至多40%。
translated by 谷歌翻译
了解用户的意图并从句子中识别出语义实体,即自然语言理解(NLU),是许多自然语言处理任务的上游任务。主要挑战之一是收集足够数量的注释数据来培训模型。现有有关文本增强的研究并没有充分考虑实体,因此对于NLU任务的表现不佳。为了解决这个问题,我们提出了一种新型的NLP数据增强技术,实体意识数据增强(EADA),该技术应用了树结构,实体意识到语法树(EAST),以表示句子与对实体的注意相结合。我们的EADA技术会自动从少量注释的数据中构造东方,然后生成大量的培训实例,以进行意图检测和插槽填充。四个数据集的实验结果表明,该技术在准确性和泛化能力方面显着优于现有数据增强方法。
translated by 谷歌翻译
数据增强是自然语言处理(NLP)模型的鲁棒性评估的重要组成部分,以及增强他们培训的数据的多样性。在本文中,我们呈现NL-Cogmenter,这是一种新的参与式Python的自然语言增强框架,它支持创建两个转换(对数据的修改)和过滤器(根据特定功能的数据拆分)。我们描述了框架和初始的117个变换和23个过滤器,用于各种自然语言任务。我们通过使用其几个转换来分析流行自然语言模型的鲁棒性来证明NL-Upmenter的功效。基础架构,Datacards和稳健性分析结果在NL-Augmenter存储库上公开可用(\ url {https://github.com/gem-benchmark/nl-augmenter})。
translated by 谷歌翻译
意图分类(IC)和插槽标签(SL)模型,它形成对话系统的基础,通常会在实际字环境中遇到噪声数据。在这项工作中,我们调查了强大的IC / SL模型是如何嘈杂的数据。我们在生产人机对话中发现七种常见噪声类型(缩写,套管,拼写错误,形态变体,释义,标点符号和同义词),我们收集并公开发布测试套件。在此测试套件上,我们表明普通噪声类型显着降低了最先进的基于伯特IC / SL模型的IC精度和SL F1性能。通过利用串噪声稳健性转移 - 对一种噪声类型的培训来提高另一种噪声类型的鲁棒性 - 我们设计综合数据增强方法,以增加所有七种噪声类型的模型性能+ 10.8%的IC精度和+15平均SL F1点。据我们所知,这是第一个展示单个IC / SL模型的工作,这是一个广泛的噪声现象。
translated by 谷歌翻译
转移学习技术和预先培训的最新进展,大型上下文编码器在包括对话助理在内的现实应用程序中促进了创新。意图识别的实际需求需要有效的数据使用,并能够不断更新支持意图,采用新的意图并放弃过时的意图。尤其是,对模型的广义零拍范例,该模型受到了可见意图的训练并在可见和看不见的意图上进行了测试,这是新的重要性。在本文中,我们探讨了用于意图识别的广义零拍设置。遵循零击文本分类的最佳实践,我们使用句子对建模方法对待任务。对于看不见的意图,使用意图标签和用户话语,而无需访问外部资源(例如知识库),我们的表现优于先前的最先进的F1量化,最多可达16 \%。进一步的增强包括意图标签的词汇化,可提高性能高达7%。通过使用从其他句子对任务(例如自然语言推论)转移的任务传输,我们会获得其他改进。
translated by 谷歌翻译
Spoken language understanding (SLU) tasks have been studied for many decades in the speech research community, but have not received as much attention as lower-level tasks like speech and speaker recognition. In particular, there are not nearly as many SLU task benchmarks, and many of the existing ones use data that is not freely available to all researchers. Recent work has begun to introduce such benchmark datasets for several tasks. In this work, we introduce several new annotated SLU benchmark tasks based on freely available speech data, which complement existing benchmarks and address gaps in the SLU evaluation landscape. We contribute four tasks: question answering and summarization involve inference over longer speech sequences; named entity localization addresses the speech-specific task of locating the targeted content in the signal; dialog act classification identifies the function of a given speech utterance. We follow the blueprint of the Spoken Language Understanding Evaluation (SLUE) benchmark suite. In order to facilitate the development of SLU models that leverage the success of pre-trained speech representations, we will be publishing for each task (i) annotations for a relatively small fine-tuning set, (ii) annotated development and test sets, and (iii) baseline models for easy reproducibility and comparisons. In this work, we present the details of data collection and annotation and the performance of the baseline models. We also perform sensitivity analysis of pipeline models' performance (speech recognizer + text model) to the speech recognition accuracy, using more than 20 state-of-the-art speech recognition models.
translated by 谷歌翻译
在过去的十年中,对对话系统的兴趣已经大大增长。从扩展过程中,也有兴趣开发和改进意图分类和插槽填充模型,这是两个组件,这些组件通常在以任务为导向的对话框系统中使用。此外,良好的评估基准对于帮助比较和分析结合此类模型的系统很重要。不幸的是,该领域的许多文献仅限于对相对较少的基准数据集的分析。为了促进针对任务的对话系统的更强大的分析,我们对意图分类和插槽填充任务进行了公开可用数据集的调查。我们分类每个数据集的重要特征,并就每个数据集的适用性,优势和劣势进行讨论。我们的目标是,这项调查有助于提高这些数据集的可访问性,我们希望它们能够在未来评估意图分类和填充插槽模型中用于以任务为导向的对话框系统。
translated by 谷歌翻译
大多数现有的插槽填充模型倾向于记住实体的固有模式和培训数据中相应的上下文。但是,这些模型在暴露于口语语言扰动或实践中的变化时会导致系统故障或不良输出。我们提出了一种扰动的语义结构意识转移方法,用于训练扰动插槽填充模型。具体而言,我们介绍了两种基于传销的培训策略,以分别从无监督的语言扰动语料库中分别学习上下文语义结构和单词分布。然后,我们将从上游训练过程学到的语义知识转移到原始样本中,并通过一致性处理过滤生成的数据。这些程序旨在增强老虎机填充模型的鲁棒性。实验结果表明,我们的方法始终优于先前的基本方法,并获得强有力的概括,同时阻止模型记住实体和环境的固有模式。
translated by 谷歌翻译
口语理解(SLU)是大多数人机相互作用系统中的核心任务。随着智能家居,智能手机和智能扬声器的出现,SLU已成为该行业的关键技术。在经典的SLU方法中,自动语音识别(ASR)模块将语音信号转录为文本表示,自然语言理解(NLU)模块从中提取语义信息。最近,基于深神经网络的端到端SLU(E2E SLU)已经获得了动力,因为它受益于ASR和NLU部分的联合优化,因此限制了管道架构的误差效应的级联反应。但是,对于E2E模型用于预测语音输入的概念和意图的实际语言特性知之甚少。在本文中,我们提出了一项研究,以确定E2E模型执行SLU任务的信号特征和其他语言特性。该研究是在必须处理非英语(此处法语)语音命令的智能房屋的应用领域进行的。结果表明,良好的E2E SLU性能并不总是需要完美的ASR功能。此外,结果表明,与管道模型相比,E2E模型在处理背景噪声和句法变化方面具有出色的功能。最后,更细粒度的分析表明,E2E模型使用输入信号的音调信息来识别语音命令概念。本文概述的结果和方法提供了一个跳板,以进一步分析语音处理中的E2E模型。
translated by 谷歌翻译
数据饥饿的深度神经网络已经将自己作为许多NLP任务的标准建立为包括传统序列标记的标准。尽管他们在高资源语言上表现最先进的表现,但它们仍然落后于低资源场景的统计计数器。一个方法来反击攻击此问题是文本增强,即,从现有数据生成新的合成训练数据点。虽然NLP最近目睹了一种文本增强技术的负载,但该领域仍然缺乏对多种语言和序列标记任务的系统性能分析。为了填补这一差距,我们调查了三类文本增强方法,其在语法(例如,裁剪子句子),令牌(例如,随机字插入)和字符(例如,字符交换)级别上执行更改。我们系统地将它们与语音标记,依赖解析和语义角色标记的分组进行了比较,用于使用各种模型的各种语言系列,包括依赖于诸如MBERT的普赖金的多语言语境化语言模型的架构。增强最显着改善了解析,然后是语音标记和语义角色标记的依赖性解析。我们发现实验技术通常在形态上丰富的语言,而不是越南语等分析语言。我们的研究结果表明,增强技术可以进一步改善基于MBERT的强基线。我们将字符级方法标识为最常见的表演者,而同义词替换和语法增强仪提供不一致的改进。最后,我们讨论了最大依赖于任务,语言对和模型类型的结果。
translated by 谷歌翻译
作为有效的策略,数据增强(DA)减轻了深度学习技术可能失败的数据稀缺方案。它广泛应用于计算机视觉,然后引入自然语言处理并实现了许多任务的改进。DA方法的主要重点之一是提高培训数据的多样性,从而帮助模型更好地推广到看不见的测试数据。在本调查中,我们根据增强数据的多样性,将DA方法框架为三类,包括释义,注释和采样。我们的论文根据上述类别,详细分析了DA方法。此外,我们还在NLP任务中介绍了他们的应用以及挑战。
translated by 谷歌翻译
目前对语言理解(SLU)的研究重大仅限于简单的设置:基于纯文本的SLU,它将用户话语为输入并生成其相应的语义帧(例如,意图和插槽)。不幸的是,当话语是语义模糊的话语时,这种简单的设置可能无法在复杂的真实情景中工作,这不能通过基于文本的SLU模型来实现的。在本文中,我们首先介绍了一种新的和重要任务,基于个人资料的口语语言理解(ProSlu),这需要不仅依赖于纯文本的模型,而且需要支持的资料配置文件,以预测正确的意图和插槽。为此,我们进一步引入了一个具有超过5K的大规模的汉语数据集及其相应的支持简档信息(知识图(kg),用户配置文件(向上),上下文意识(CA))。此外,我们还评估了多个最先进的基线模型,并探索多级知识适配器,以有效地结合资料信息。实验结果表明,当话语是语义模糊的,我们所提出的框架可以有效地融合了句子级意图检测和令牌级槽填充的支持信息,所以所有现有的基于文本的SLU模型都无法工作。最后,我们总结了关键挑战,为未来方向提供了新的观点,希望促进研究。
translated by 谷歌翻译
发展任务导向的对话助理的实用需求需要了解许多语言。多语言自然语言理解(NLU)的新型基准包括多种语言中的单声道句,用意图和插槽注释。在这种设置模型中,用于交叉传输在联合意图识别和槽填充方面表现出显着性能。然而,现有的基准缺乏代码切换话语,这难以收集和标签由于语法结构的复杂性。对于NLU模型的评估似乎偏见和有限,因为代码切换被遗漏了范围。我们的工作采用认可的方法来生成合理的和自然探测的代码切换话语,并使用它们来创建合成代码交换测试集。基于实验,我们报告说,最先进的NLU模型无法处理代码切换。在最糟糕的是,性能,通过语义精度评估,从横跨80 \%的8 \%的低至15 \%。此外,我们展示了,对合成码混合数据进行预训练有助于在具有单晶体数据的可比水平上保持所提出的测试中的性能。最后,我们分析了不同的语言对并表明语言越近,NLU模型越好地处理了交替。这符合对多语种模型在语言之间进行转移的共同理解
translated by 谷歌翻译
Natural Language Generation (NLG) has improved exponentially in recent years thanks to the development of sequence-to-sequence deep learning technologies such as Transformer-based language models. This advancement has led to more fluent and coherent NLG, leading to improved development in downstream tasks such as abstractive summarization, dialogue generation and data-to-text generation. However, it is also apparent that deep learning based generation is prone to hallucinate unintended text, which degrades the system performance and fails to meet user expectations in many real-world scenarios. To address this issue, many studies have been presented in measuring and mitigating hallucinated texts, but these have never been reviewed in a comprehensive manner before. In this survey, we thus provide a broad overview of the research progress and challenges in the hallucination problem in NLG. The survey is organized into two parts: (1) a general overview of metrics, mitigation methods, and future directions; and (2) an overview of task-specific research progress on hallucinations in the following downstream tasks, namely abstractive summarization, dialogue generation, generative question answering, data-to-text generation, machine translation, and visual-language generation. This survey serves to facilitate collaborative efforts among researchers in tackling the challenge of hallucinated texts in NLG.
translated by 谷歌翻译
Grammatical Error Correction (GEC) is the task of automatically detecting and correcting errors in text. The task not only includes the correction of grammatical errors, such as missing prepositions and mismatched subject-verb agreement, but also orthographic and semantic errors, such as misspellings and word choice errors respectively. The field has seen significant progress in the last decade, motivated in part by a series of five shared tasks, which drove the development of rule-based methods, statistical classifiers, statistical machine translation, and finally neural machine translation systems which represent the current dominant state of the art. In this survey paper, we condense the field into a single article and first outline some of the linguistic challenges of the task, introduce the most popular datasets that are available to researchers (for both English and other languages), and summarise the various methods and techniques that have been developed with a particular focus on artificial error generation. We next describe the many different approaches to evaluation as well as concerns surrounding metric reliability, especially in relation to subjective human judgements, before concluding with an overview of recent progress and suggestions for future work and remaining challenges. We hope that this survey will serve as comprehensive resource for researchers who are new to the field or who want to be kept apprised of recent developments.
translated by 谷歌翻译
我们介绍了用于插槽,意图分类和虚拟助手评估的大规模数据集 - 数字亚马逊SLU资源包(SLURP)。大规模包含1M现实,平行,标记为虚拟助手的话语,涵盖51种语言,18个域,60个意图和55个插槽。通过任务专业翻译人员将仅英文slurp数据集定位为29属的50种类型多样性的语言来创建大规模。我们还介绍了XLM-R和MT5上的建模结果,包括精确的匹配精度,意图分类精度和插槽填充F1分数。我们已经公开发布了数据集,建模代码和模型。
translated by 谷歌翻译
Much recent work in task-oriented parsing has focused on finding a middle ground between flat slots and intents, which are inexpressive but easy to annotate, and powerful representations such as the lambda calculus, which are expressive but costly to annotate. This paper continues the exploration of task-oriented parsing by introducing a new dataset for parsing pizza and drink orders, whose semantics cannot be captured by flat slots and intents. We perform an extensive evaluation of deep-learning techniques for task-oriented parsing on this dataset, including different flavors of seq2seq systems and RNNGs. The dataset comes in two main versions, one in a recently introduced utterance-level hierarchical notation that we call TOP, and one whose targets are executable representations (EXR). We demonstrate empirically that training the parser to directly generate EXR notation not only solves the problem of entity resolution in one fell swoop and overcomes a number of expressive limitations of TOP notation, but also results in significantly greater parsing accuracy.
translated by 谷歌翻译
我们提出语言学家,这是一种通过微调Alexatm 5B生成带注释数据的方法,用于生成意图分类和插槽标记(IC+ST),这是一种5亿参数的多语言序列到序列(SEQ2SEQ)模型,在灵活的指令上迅速的。在SNIP数据集的10次新颖意图设置中,语言学家超过了最新的方法(反向翻译和示例外推),可以通过宽阔的边距,显示出IC回忆中+1.9点的目标意图的绝对改善ST F1分数和+2.5分。在MATIS ++数据集的零击跨语言设置中,语言学家表现出强大的机器翻译基线,插槽对齐的基线是+4.14的+4.14点在6个语言上绝对在ST F1分数上,同时在IC上匹配IC的性能。最后,我们在用于对话代理IC+ST的内部大规模多语言数据集上验证了我们的结果,并显示了使用背面翻译,释义和插槽目录重新采样采样的基线的显着改进。据我们所知,我们是第一个展示大规模SEQ2SEQ模型的指导微调的人,以控制多语言意图和插槽标记的数据生成的输出。
translated by 谷歌翻译
我们介绍了第一项经验研究,研究了突发性检测对意向检测和插槽填充的下游任务的影响。我们对越南人进行了这项研究,这是一种低资源语言,没有以前的研究,也没有公共数据集可用于探索。首先,我们通过手动添加上下文不满并注释它们来扩展流利的越南意图检测和插槽填充phoatis。然后,我们使用强基线进行实验进行实验,以基于预训练的语言模型,以检测和关节意图检测和插槽填充。我们发现:(i)爆发对下游意图检测和插槽填充任务的性能产生负面影响,并且(ii)在探索环境中,预先训练的多语言语言模型XLM-R有助于产生更好的意图检测和插槽比预先训练的单语言模型phobert填充表演,这与在流利性环境中通常发现的相反。
translated by 谷歌翻译
Intent classification and slot filling are two core tasks in natural language understanding (NLU). The interaction nature of the two tasks makes the joint models often outperform the single designs. One of the promising solutions, called BERT (Bidirectional Encoder Representations from Transformers), achieves the joint optimization of the two tasks. BERT adopts the wordpiece to tokenize each input token into multiple sub-tokens, which causes a mismatch between the tokens and the labels lengths. Previous methods utilize the hidden states corresponding to the first sub-token as input to the classifier, which limits performance improvement since some hidden semantic informations is discarded in the fine-tune process. To address this issue, we propose a novel joint model based on BERT, which explicitly models the multiple sub-tokens features after wordpiece tokenization, thereby generating the context features that contribute to slot filling. Specifically, we encode the hidden states corresponding to multiple sub-tokens into a context vector via the attention mechanism. Then, we feed each context vector into the slot filling encoder, which preserves the integrity of the sentence. Experimental results demonstrate that our proposed model achieves significant improvement on intent classification accuracy, slot filling F1, and sentence-level semantic frame accuracy on two public benchmark datasets. The F1 score of the slot filling in particular has been improved from 96.1 to 98.2 (2.1% absolute) on the ATIS dataset.
translated by 谷歌翻译