神经体系结构搜索(NAS)是一种用于深度学习设计自动化的自动化体系结构工程方法,它是模型开发,选择,评估和性能估算的手动和错误过程的替代方法。但是,NAS的一个主要障碍是非常苛刻的计算资源需求和耗时的迭代,尤其是在数据集尺度时。在本文中,针对新兴视觉变压器(VIT),我们提出了NASHD,这是一种基于高度计算的监督学习模型,以对给定架构和配置的性能进行排名。与其他基于学习的方法不同,由于HDC体系结构的高平行处理,NASHD的速度更快。我们还评估了两个HDC编码方案:基于革兰氏阴性的NASHD的性能和效率。在来自不同范围的8个应用程序的Vimer-Ufo基准数据集上,NASHD记录可以对近100K视觉变压器模型的性能进行排名,而该模型的性能约为1分钟,同时仍可以通过复杂的模型来取得可比的结果。
translated by 谷歌翻译
神经体系结构搜索(NAS)可以自动为深神经网络(DNN)设计架构,并已成为当前机器学习社区中最热门的研究主题之一。但是,NAS通常在计算上很昂贵,因为在搜索过程中需要培训大量DNN。绩效预测因素可以通过直接预测DNN的性能来大大减轻NAS的过失成本。但是,构建令人满意的性能预测能力很大程度上取决于足够的训练有素的DNN体系结构,在大多数情况下很难获得。为了解决这个关键问题,我们在本文中提出了一种名为Giaug的有效的DNN体系结构增强方法。具体而言,我们首先提出了一种基于图同构的机制,其优点是有效地生成$ \ boldsymbol n $(即$ \ boldsymbol n!$)的阶乘,对具有$ \ boldsymbol n $ n $ n $ n $ \ boldsymbol n $的单个体系结构进行了带注释的体系结构节点。此外,我们还设计了一种通用方法,将体系结构编码为适合大多数预测模型的形式。结果,可以通过各种基于性能预测因子的NAS算法灵活地利用Giaug。我们在中小型,中,大规模搜索空间上对CIFAR-10和Imagenet基准数据集进行了广泛的实验。实验表明,Giaug可以显着提高大多数最先进的同伴预测因子的性能。此外,与最先进的NAS算法相比,Giaug最多可以在ImageNet上节省三级计算成本。
translated by 谷歌翻译
大多数现有的神经体系结构搜索(NAS)基准和算法优先考虑了良好的任务,例如CIFAR或Imagenet上的图像分类。这使得在更多样化的领域的NAS方法的表现知之甚少。在本文中,我们提出了NAS-Bench-360,这是一套基准套件,用于评估超出建筑搜索传统研究的域的方法,并使用它来解决以下问题:最先进的NAS方法在多样化的任务?为了构建基准测试,我们策划了十个任务,这些任务涵盖了各种应用程序域,数据集大小,问题维度和学习目标。小心地选择每个任务与现代CNN的搜索方法互操作,同时可能与其原始开发领域相距遥远。为了加快NAS研究的成本,对于其中两个任务,我们发布了包括标准CNN搜索空间的15,625个体系结构的预定性能。在实验上,我们表明需要对NAS BENCH-360进行更强大的NAS评估,从而表明几种现代NAS程序在这十个任务中执行不一致,并且有许多灾难性差的结果。我们还展示了NAS Bench-360及其相关的预算结果将如何通过测试NAS文献中最近推广的一些假设来实现未来的科学发现。 NAS-Bench-360托管在https://nb360.ml.cmu.edu上。
translated by 谷歌翻译
在过去的几年中,视觉模型的规模呈指数增长,尤其是在视觉变压器出现之后。这激发了参数有效调整方法的开发,例如学习适配器层或视觉及时令牌,这允许训练一小部分模型参数,而从预训练中获得的绝大多数则可以冷冻。但是,设计适当的调整方法是不平凡的:可能需要尝试冗长的设计选择列表,更不用说每个下游数据集通常都需要自定义设计。在本文中,我们将现有的参数效率调整方法视为“及时模块”,并提出了神经及时搜索(Noah),这是一种新颖的方法,可以学习大型视觉模型,通过神经体系结构搜索算法的及时模型的最佳设计, ,专门针对每个下游数据集。通过对20多个视觉数据集进行广泛的实验,我们证明了Noah(i)优于单个提示模块,(ii)具有良好的少数学习能力,并且(iii)可以域名。代码和型号可在https://github.com/davidzhangyuanhan/noah上找到。
translated by 谷歌翻译
神经体系结构搜索(NAS)最近在深度学习社区中变得越来越流行,主要是因为它可以提供一个机会,使感兴趣的用户没有丰富的专业知识,从而从深度神经网络(DNNS)的成功中受益。但是,NAS仍然很费力且耗时,因为在NAS的搜索过程中需要进行大量的性能估计,并且训练DNNS在计算上是密集的。为了解决NAS的主要局限性,提高NAS的效率对于NAS的设计至关重要。本文以简要介绍了NAS的一般框架。然后,系统地讨论了根据代理指标评估网络候选者的方法。接下来是对替代辅助NAS的描述,该NAS分为三个不同类别,即NAS的贝叶斯优化,NAS的替代辅助进化算法和NAS的MOP。最后,讨论了剩余的挑战和开放研究问题,并在这个新兴领域提出了有希望的研究主题。
translated by 谷歌翻译
深度学习技术在各种任务中都表现出了出色的有效性,并且深度学习具有推进多种应用程序(包括在边缘计算中)的潜力,其中将深层模型部署在边缘设备上,以实现即时的数据处理和响应。一个关键的挑战是,虽然深层模型的应用通常会产生大量的内存和计算成本,但Edge设备通常只提供非常有限的存储和计算功能,这些功能可能会在各个设备之间差异很大。这些特征使得难以构建深度学习解决方案,以释放边缘设备的潜力,同时遵守其约束。应对这一挑战的一种有希望的方法是自动化有效的深度学习模型的设计,这些模型轻巧,仅需少量存储,并且仅产生低计算开销。该调查提供了针对边缘计算的深度学习模型设计自动化技术的全面覆盖。它提供了关键指标的概述和比较,这些指标通常用于量化模型在有效性,轻度和计算成本方面的水平。然后,该调查涵盖了深层设计自动化技术的三类最新技术:自动化神经体系结构搜索,自动化模型压缩以及联合自动化设计和压缩。最后,调查涵盖了未来研究的开放问题和方向。
translated by 谷歌翻译
While machine learning is traditionally a resource intensive task, embedded systems, autonomous navigation, and the vision of the Internet of Things fuel the interest in resource-efficient approaches. These approaches aim for a carefully chosen trade-off between performance and resource consumption in terms of computation and energy. The development of such approaches is among the major challenges in current machine learning research and key to ensure a smooth transition of machine learning technology from a scientific environment with virtually unlimited computing resources into everyday's applications. In this article, we provide an overview of the current state of the art of machine learning techniques facilitating these real-world requirements. In particular, we focus on deep neural networks (DNNs), the predominant machine learning models of the past decade. We give a comprehensive overview of the vast literature that can be mainly split into three non-mutually exclusive categories: (i) quantized neural networks, (ii) network pruning, and (iii) structural efficiency. These techniques can be applied during training or as post-processing, and they are widely used to reduce the computational demands in terms of memory footprint, inference speed, and energy efficiency. We also briefly discuss different concepts of embedded hardware for DNNs and their compatibility with machine learning techniques as well as potential for energy and latency reduction. We substantiate our discussion with experiments on well-known benchmark datasets using compression techniques (quantization, pruning) for a set of resource-constrained embedded systems, such as CPUs, GPUs and FPGAs. The obtained results highlight the difficulty of finding good trade-offs between resource efficiency and predictive performance.
translated by 谷歌翻译
具有密集乘法的神经网络(NNS)(例如,卷积和变形金刚)具有饥饿的能力,阻碍了它们更广泛的部署到资源受限的设备中。因此,遵循节能硬件实施的共同实践的无乘法网络,以更有效的运算符(例如,位移位和加法)参数化NN,并引起了人们的关注。但是,从实现的准确性方面,无乘法网络的表现不足。为此,这项工作倡导混合NN,包括强大但昂贵的乘法和有效而强大的运营商来嫁给两全其美的运营商,并提出了ShiftAddnas,它们可以自动寻找更准确,更有效的NN。我们的ShiftAddnas突出了两个推动者。具体而言,它集成了(1)第一个混合搜索空间,该空间同时结合了基于乘法的和无乘法的运算符,以促进精确和有效的混合NNS的开发; (2)一种新型的重量共享策略,可以在遵循异质分布的不同操作员之间有效分享(例如,用于卷积的高斯与添加操作员的拉普拉斯人),并同时导致超级降低的超网尺寸和更好的搜索网络。对各种模型,数据集和任务的广泛实验和消融研究始终如一地验证了ShiftAddnas的功效,例如,与最先进的NN相比,获得的精度高达 +4.7%,或者+4.9更好的BLEU得分,而BLEU得分更好最多可提供93%或69%的能源和延迟节省。可以在https://github.com/rice-eic/shiftaddnas上获得代码和预估计的模型。
translated by 谷歌翻译
深神经网络(DNNS)在各种机器学习(ML)应用程序中取得了巨大成功,在计算机视觉,自然语言处理和虚拟现实等中提供了高质量的推理解决方案。但是,基于DNN的ML应用程序也带来计算和存储要求的增加了很多,对于具有有限的计算/存储资源,紧张的功率预算和较小形式的嵌入式系统而言,这尤其具有挑战性。挑战还来自各种特定应用的要求,包括实时响应,高通量性能和可靠的推理准确性。为了应对这些挑战,我们介绍了一系列有效的设计方法,包括有效的ML模型设计,定制的硬件加速器设计以及硬件/软件共同设计策略,以启用嵌入式系统上有效的ML应用程序。
translated by 谷歌翻译
本文提出了一种新颖的统一特征优化(UFO)范式,用于训练和在现实世界和大规模场景下进行深层模型,这需要集合多个AI功能。不明飞行物的目标是通过对所有任务进行大规模预修。与众所周知的基础模型相比,UFO具有两个不同的重点,即相对较小的模型大小,没有适应性成本:1)UFO以多任务学习方式将广泛的任务挤入中等尺寸的统一模型中并在转移到下游任务时进一步修剪模型大小。 2)不明飞行物不强调转移到新任务。相反,它旨在使修剪模型专门用于一个或多个已经看到的任务。有了这两个特征,UFO为灵活的部署提供了极大的便利,同时保持了大规模预处理的好处。 UFO的一个关键优点是修剪过程不仅可以减少模型的大小和推理消耗,而且还提高了某些任务的准确性。具体而言,UFO考虑了多任务培训,并对统一模型产生了两倍的影响:一些密切相关的任务具有相互利益,而某些任务相互冲突。不明飞行物设法通过新颖的网络体系结构搜索(NAS)方法来减少冲突并保留相互利益。对各种深度表示学习任务(即面部识别,人重新识别,车辆重新识别和产品检索)的实验表明,从UFO中修剪的模型比单件任务训练的对应物更高,但却具有更高的准确性较小的型号大小,验证不明飞行物的概念。此外,UFO还支持发布170亿个参数计算机视觉(CV)基础模型,该模型是该行业中最大的CV模型。
translated by 谷歌翻译
近年来,行业和学术界的深度学习(DL)迅速发展。但是,找到DL模型的最佳超参数通常需要高计算成本和人类专业知识。为了减轻上述问题,进化计算(EC)作为一种强大的启发式搜索方法显示出在DL模型的自动设计中,所谓的进化深度学习(EDL)具有重要优势。本文旨在从自动化机器学习(AUTOML)的角度分析EDL。具体来说,我们首先从机器学习和EC阐明EDL,并将EDL视为优化问题。根据DL管道的说法,我们系统地介绍了EDL方法,从功能工程,模型生成到具有新的分类法的模型部署(即,什么以及如何发展/优化),专注于解决方案表示和搜索范式的讨论通过EC处理优化问题。最后,提出了关键的应用程序,开放问题以及可能有希望的未来研究线。这项调查回顾了EDL的最新发展,并为EDL的开发提供了有见地的指南。
translated by 谷歌翻译
神经体系结构搜索(NAS)是自动化有效图像处理DNN设计的强大工具。该排名已被倡导为NAS设计有效的性能预测指标。先前的对比方法通过比较架构对并预测其相对性能来解决排名问题。但是,它仅关注两个相关建筑之间的排名,而忽略了搜索空间的整体质量分布,这可能会遇到概括性问题。提出了一个预测因子,即专注于特定体系结构的全球质量层的神经体系结构排名,以解决由当地观点引起的此类问题。 NAR在全球范围内探索搜索空间的质量层,并根据其全球排名将每个人分类为他们所属的层。因此,预测变量获得了搜索空间的性能分布的知识,这有助于更轻松地将其排名能力推广到数据集。同时,全球质量分布通过根据质量层的统计数据直接对候选者进行采样,从而促进了搜索阶段,而质量层的统计数据没有培训搜索算法,例如增强型学习(RL)或进化算法(EA),因此简化了NAS管道并保存计算开销。拟议的NAR比在两个广泛使用的NAS研究数据集上的最先进方法取得了更好的性能。在NAS-Bench-101的庞大搜索空间中,NAR可以轻松地找到具有最高0.01 $ \ unicode {x2030} $ performance的架构。它还可以很好地概括为NAS Bench-201的不同图像数据集,即CIFAR-10,CIFAR-100和Imagenet-16-120,通过识别每个它们的最佳体系结构。
translated by 谷歌翻译
深度神经网络中的建筑进步导致了跨越一系列计算机视觉任务的巨大飞跃。神经建筑搜索(NAS)并没有依靠人类的专业知识,而是成为自动化建筑设计的有前途的途径。尽管图像分类的最新成就提出了机会,但NAS的承诺尚未对更具挑战性的语义细分任务进行彻底评估。将NAS应用于语义分割的主要挑战来自两个方面:(i)要处理的高分辨率图像; (ii)针对自动驾驶等应用的实时推理速度(即实时语义细分)的其他要求。为了应对此类挑战,我们在本文中提出了一种替代辅助的多目标方法。通过一系列自定义预测模型,我们的方法有效地将原始的NAS任务转换为普通的多目标优化问题。然后是用于填充选择的层次预筛选标准,我们的方法逐渐实现了一组有效的体系结构在细分精度和推理速度之间进行交易。对三个基准数据集的经验评估以及使用华为地图集200 dk的应用程序的实证评估表明,我们的方法可以识别架构明显优于人类专家手动设计和通过其他NAS方法自动设计的现有最先进的体系结构。
translated by 谷歌翻译
超参数优化构成了典型的现代机器学习工作流程的很大一部分。这是由于这样一个事实,即机器学习方法和相应的预处理步骤通常只有在正确调整超参数时就会产生最佳性能。但是在许多应用中,我们不仅有兴趣仅仅为了预测精度而优化ML管道;确定最佳配置时,必须考虑其他指标或约束,从而导致多目标优化问题。由于缺乏知识和用于多目标超参数优化的知识和容易获得的软件实现,因此通常在实践中被忽略。在这项工作中,我们向读者介绍了多个客观超参数优化的基础知识,并激励其在应用ML中的实用性。此外,我们从进化算法和贝叶斯优化的领域提供了现有优化策略的广泛调查。我们说明了MOO在几个特定ML应用中的实用性,考虑了诸如操作条件,预测时间,稀疏,公平,可解释性和鲁棒性之类的目标。
translated by 谷歌翻译
卷积神经网络(CNNS)用于许多现实世界应用,例如基于视觉的自主驾驶和视频内容分析。要在各种目标设备上运行CNN推断,硬件感知神经结构搜索(NAS)至关重要。有效的硬件感知NAS的关键要求是对推理延迟的快速评估,以便对不同的架构进行排名。在构建每个目标设备的延迟预测器的同时,在本领域中通常使用,这是一个非常耗时的过程,在极定的设备存在下缺乏可扩展性。在这项工作中,我们通过利用延迟单调性来解决可扩展性挑战 - 不同设备上的架构延迟排名通常相关。当存在强烈的延迟单调性时,我们可以重复使用在新目标设备上搜索一个代理设备的架构,而不会丢失最佳状态。在没有强烈的延迟单调性的情况下,我们提出了一种有效的代理适应技术,以显着提高延迟单调性。最后,我们验证了我们的方法,并在多个主流搜索空间上使用不同平台的设备进行实验,包括MobileNet-V2,MobileNet-V3,NAS-Bench-201,Proxylessnas和FBNet。我们的结果突出显示,通过仅使用一个代理设备,我们可以找到几乎与现有的每个设备NAS相同的帕累托最优架构,同时避免为每个设备构建延迟预测器的禁止成本。 github:https://github.com/ren-research/oneproxy.
translated by 谷歌翻译
异构表格数据是最常用的数据形式,对于众多关键和计算要求的应用程序至关重要。在同质数据集上,深度神经网络反复显示出卓越的性能,因此被广泛采用。但是,它们适应了推理或数据生成任务的表格数据仍然具有挑战性。为了促进该领域的进一步进展,这项工作概述了表格数据的最新深度学习方法。我们将这些方法分为三组:数据转换,专业体系结构和正则化模型。对于每个小组,我们的工作提供了主要方法的全面概述。此外,我们讨论了生成表格数据的深度学习方法,并且还提供了有关解释对表格数据的深层模型的策略的概述。因此,我们的第一个贡献是解决上述领域中的主要研究流和现有方法,同时强调相关的挑战和开放研究问题。我们的第二个贡献是在传统的机器学习方法中提供经验比较,并在五个流行的现实世界中的十种深度学习方法中,具有不同规模和不同的学习目标的经验比较。我们已将作为竞争性基准公开提供的结果表明,基于梯度增强的树合奏的算法仍然大多在监督学习任务上超过了深度学习模型,这表明对表格数据的竞争性深度学习模型的研究进度停滞不前。据我们所知,这是对表格数据深度学习方法的第一个深入概述。因此,这项工作可以成为有价值的起点,以指导对使用表格数据深入学习感兴趣的研究人员和从业人员。
translated by 谷歌翻译
医学成像的病变分割是临床研究中的一个重要课题。研究人员提出了各种检测和分段算法来解决这项任务。最近,基于深度学习的方法显着提高了传统方法的性能。然而,大多数最先进的深度学习方法需要手动设计多个网络组件和培训策略。在本文中,我们提出了一种新的自动化机器学习算法T-Automl,不仅搜索最佳神经结构,而且还可以同时找到超参数和数据增强策略的最佳组合。该方法采用现代变压器模型,引入了适应搜索空间嵌入的动态长度,并且可以显着提高搜索能力。我们在几个大型公共病变分割数据集上验证T-Automl并实现最先进的性能。
translated by 谷歌翻译
本文探讨了从视觉变压器查找最佳子模型的可行性,并引入了纯Vision变压器减肥(VIT-SLIM)框架,可以在跨多个维度从原始模型的端到端搜索这样的子结构,包括输入令牌,MHSA和MLP模块,具有最先进的性能。我们的方法基于学习和统一的L1稀疏限制,具有预定的因素,以反映不同维度的连续搜索空间中的全局重要性。通过单次训练方案,搜索过程非常有效。例如,在DeIT-S中,VIT-SLIM仅需要〜43 GPU小时进行搜索过程,并且搜索结构具有灵活的不同模块中的多维尺寸。然后,根据运行设备上的精度折叠折衷的要求采用预算阈值,并执行重新训练过程以获得最终模型。广泛的实验表明,我们的耐比可以压缩高达40%的参数和40%的视觉变压器上的40%拖鞋,同时在Imagenet上提高了〜0.6%的精度。我们还展示了我们搜索模型在几个下游数据集中的优势。我们的源代码将公开提供。
translated by 谷歌翻译
The automated machine learning (AutoML) field has become increasingly relevant in recent years. These algorithms can develop models without the need for expert knowledge, facilitating the application of machine learning techniques in the industry. Neural Architecture Search (NAS) exploits deep learning techniques to autonomously produce neural network architectures whose results rival the state-of-the-art models hand-crafted by AI experts. However, this approach requires significant computational resources and hardware investments, making it less appealing for real-usage applications. This article presents the third version of Pareto-Optimal Progressive Neural Architecture Search (POPNASv3), a new sequential model-based optimization NAS algorithm targeting different hardware environments and multiple classification tasks. Our method is able to find competitive architectures within large search spaces, while keeping a flexible structure and data processing pipeline to adapt to different tasks. The algorithm employs Pareto optimality to reduce the number of architectures sampled during the search, drastically improving the time efficiency without loss in accuracy. The experiments performed on images and time series classification datasets provide evidence that POPNASv3 can explore a large set of assorted operators and converge to optimal architectures suited for the type of data provided under different scenarios.
translated by 谷歌翻译
由于物体形状和图案(例如器官或肿瘤)的高可变性,3D医学图像的语义分割是一个具有挑战性的任务。鉴于最近在医学图像分割中深入学习的成功,已经引入了神经结构搜索(NAS)以查找高性能3D分段网络架构。但是,由于3D数据的大量计算要求和架构搜索的离散优化性质,之前的NAS方法需要很长的搜索时间或必要的连续放松,并且通常导致次优网络架构。虽然单次NAS可能会解决这些缺点,但其在分段域中的应用尚未在膨胀的多尺度多路径搜索空间中进行很好地研究。为了为医学图像分割启用一次性NAS,我们的方法名为Hypersegnas,介绍了通过结合建筑拓扑信息来帮助超级培训培训。在培训超级网络培训并在架构搜索期间引入开销时,可以删除这种超空头。我们表明,与以前的最先进的(SOTA)分割网络相比,Hypersegnas产生更好的表现和更直观的架构;此外,它可以在不同的计算限制下快速准确地找到良好的体系结构候选者。我们的方法是在医疗细分Decovaton(MSD)挑战的公共数据集上评估,并实现了SOTA表演。
translated by 谷歌翻译