在BIN之间传输多个对象是许多应用程序的常用任务。在机器人学中,标准方法是拿起一个对象并一次转移它。然而,抓住和拾取多个物体并立即将它们转移在一起更有效。本文介绍了一组新颖的策略,用于有效地抓住一个垃圾箱中的多个物体以将它们转移到另一个物体。该策略使机器人手能够识别最佳现成的手配置(预先掌握),并根据要掌握所需的物体计算屈曲协同作用。本文还提出了一种方法,它使用Markov决策过程(MDP)在所需的数量大于单个掌握的能力时模拟拾取传输例程。使用MDP模型,所提出的方法可以产生最佳的拾取传输程序,以最小化传输的数量,表示效率。所提出的方法已经在模拟环境和真正的机器人系统中进行了评估。结果表明,与最佳单一物体拣选 - 转移溶液相比,该方法将转移数59%和电梯数量减少58%。
translated by 谷歌翻译
人类手可以通过仅基于触觉感测的堆掌握一下目标数量的物体。为此,机器人需要在堆中掌握,从提升之前感测掌握中的物体的数量,并预测升降后将保持掌握的物体数量。这是一个具有挑战性的问题,因为在进行预测时,机器人手仍然在桩中,并且抓握中的物体对视觉系统不观察到。此外,在从堆中抬起之前手掌抓住的一些物体可能会在手中抬起时掉落。出现这种情况,因为它们被堆中的其他物体支持而不是手指。因此,机器人手应该在提升之前使用其触觉传感器来感测掌握的物体的数量。本文介绍了用于解决此问题的新型多目标抓取分析方法。它们包括掌握体积计算,触觉力分析和数据驱动的深度学习方法。该方法已经在Barrett手上实施,然后在模拟中评估和具有机器人系统的真实设置。评估结果得出结论,一旦BarretT手掌掌握了多个物体,数据驱动的模型可以在提升之前预测,在提升之后将保留在手中的物体的数量。用于我们方法的根均方误差为30.74,用于模拟的立方体和0.58个,球的距离,1.06个球体,对于真实系统的立方体,1.45。
translated by 谷歌翻译
机器人仿真一直是数据驱动的操作任务的重要工具。但是,大多数现有的仿真框架都缺乏与触觉传感器的物理相互作用的高效和准确模型,也没有逼真的触觉模拟。这使得基于触觉的操纵任务的SIM转交付仍然具有挑战性。在这项工作中,我们通过建模接触物理学来整合机器人动力学和基于视觉的触觉传感器的模拟。该触点模型使用机器人最终效应器上的模拟接触力来告知逼真的触觉输出。为了消除SIM到真实传输差距,我们使用现实世界数据校准了机器人动力学,接触模型和触觉光学模拟器的物理模拟器,然后我们在零摄像机上演示了系统的有效性 - 真实掌握稳定性预测任务,在各种对象上,我们达到平均准确性为90.7%。实验揭示了将我们的模拟框架应用于更复杂的操纵任务的潜力。我们在https://github.com/cmurobotouch/taxim/tree/taxim-robot上开放仿真框架。
translated by 谷歌翻译
我们研究了如何将高分辨率触觉传感器与视觉和深度传感结合使用,以改善掌握稳定性预测。在模拟高分辨率触觉传感的最新进展,尤其是触觉模拟器,使我们能够评估如何结合感应方式训练神经网络。借助训练大型神经网络所需的大量数据,机器人模拟器提供了一种快速自动化数据收集过程的方法。我们通过消融研究扩展现有工作,并增加了从YCB基准组中获取的一组对象。我们的结果表明,尽管视觉,深度和触觉感测的组合为已知对象提供了最佳预测结果,但该网络未能推广到未知对象。我们的工作还解决了触觉模拟中机器人抓握的现有问题以及如何克服它们。
translated by 谷歌翻译
抓握是通过在一组触点上施加力和扭矩来挑选对象的过程。深度学习方法的最新进展允许在机器人对象抓地力方面快速进步。我们在过去十年中系统地调查了出版物,特别感兴趣使用最终效果姿势的所有6度自由度抓住对象。我们的综述发现了四种用于机器人抓钩的常见方法:基于抽样的方法,直接回归,强化学习和示例方法。此外,我们发现了围绕抓握的两种“支持方法”,这些方法使用深入学习来支持抓握过程,形状近似和负担能力。我们已经将本系统评论(85篇论文)中发现的出版物提炼为十个关键要点,我们认为对未来的机器人抓握和操纵研究至关重要。该调查的在线版本可从https://rhys-newbury.github.io/projects/6dof/获得
translated by 谷歌翻译
在现实世界中的机器人在现实环境中的许多可能的应用领域都铰接机器人掌握物体的能力。因此,机器人Grasping多年来一直是有效的研究领域。通过我们的出版物,我们有助于使机器人能够掌握,特别关注垃圾桶采摘应用。垃圾拣选尤其挑战,由于经常杂乱和非结构化的物体排列以及通过简单的顶部掌握的物体的频繁避免的避神。为了解决这些挑战,我们提出了一种基于软演员 - 评论家(SAC)的混合离散调整的完全自我监督的强化学习方法。我们使用参数化运动原语来推动和抓握运动,以便为我们考虑的困难设置启用灵活的适应行为。此外,我们使用数据增强来提高样本效率。我们证明了我们提出的关于具有挑战性的采摘情景的方法,其中平面掌握学习或行动离散化方法会面临很大困难
translated by 谷歌翻译
Reliably planning fingertip grasps for multi-fingered hands lies as a key challenge for many tasks including tool use, insertion, and dexterous in-hand manipulation. This task becomes even more difficult when the robot lacks an accurate model of the object to be grasped. Tactile sensing offers a promising approach to account for uncertainties in object shape. However, current robotic hands tend to lack full tactile coverage. As such, a problem arises of how to plan and execute grasps for multi-fingered hands such that contact is made with the area covered by the tactile sensors. To address this issue, we propose an approach to grasp planning that explicitly reasons about where the fingertips should contact the estimated object surface while maximizing the probability of grasp success. Key to our method's success is the use of visual surface estimation for initial planning to encode the contact constraint. The robot then executes this plan using a tactile-feedback controller that enables the robot to adapt to online estimates of the object's surface to correct for errors in the initial plan. Importantly, the robot never explicitly integrates object pose or surface estimates between visual and tactile sensing, instead it uses the two modalities in complementary ways. Vision guides the robots motion prior to contact; touch updates the plan when contact occurs differently than predicted from vision. We show that our method successfully synthesises and executes precision grasps for previously unseen objects using surface estimates from a single camera view. Further, our approach outperforms a state of the art multi-fingered grasp planner, while also beating several baselines we propose.
translated by 谷歌翻译
We describe a learning-based approach to handeye coordination for robotic grasping from monocular images. To learn hand-eye coordination for grasping, we trained a large convolutional neural network to predict the probability that task-space motion of the gripper will result in successful grasps, using only monocular camera images and independently of camera calibration or the current robot pose. This requires the network to observe the spatial relationship between the gripper and objects in the scene, thus learning hand-eye coordination. We then use this network to servo the gripper in real time to achieve successful grasps. To train our network, we collected over 800,000 grasp attempts over the course of two months, using between 6 and 14 robotic manipulators at any given time, with differences in camera placement and hardware. Our experimental evaluation demonstrates that our method achieves effective real-time control, can successfully grasp novel objects, and corrects mistakes by continuous servoing.
translated by 谷歌翻译
机器人经常面临抓住目标对象的情况,但由于其他当前物体阻止了掌握动作。我们提出了一种深入的强化学习方法,以学习掌握和推动政策,以在高度混乱的环境中操纵目标对象以解决这个问题。特别是,提出了双重强化学习模型方法,该方法在处理复杂场景时具有很高的弹性,在模拟环境中使用原始对象平均达到98%的任务完成。为了评估所提出方法的性能,我们在包装对象和一堆对象方案中进行了两组实验集,在模拟中总共进行了1000个测试。实验结果表明,该提出的方法在各种情况下都效果很好,并且表现出了最新的最新方法。演示视频,训练有素的模型和源代码可重复可重复性目的。 https://github.com/kamalnl92/self-superist-learning-for-pushing-and-grasping。
translated by 谷歌翻译
As the basis for prehensile manipulation, it is vital to enable robots to grasp as robustly as humans. In daily manipulation, our grasping system is prompt, accurate, flexible and continuous across spatial and temporal domains. Few existing methods cover all these properties for robot grasping. In this paper, we propose a new methodology for grasp perception to enable robots these abilities. Specifically, we develop a dense supervision strategy with real perception and analytic labels in the spatial-temporal domain. Additional awareness of objects' center-of-mass is incorporated into the learning process to help improve grasping stability. Utilization of grasp correspondence across observations enables dynamic grasp tracking. Our model, AnyGrasp, can generate accurate, full-DoF, dense and temporally-smooth grasp poses efficiently, and works robustly against large depth sensing noise. Embedded with AnyGrasp, we achieve a 93.3% success rate when clearing bins with over 300 unseen objects, which is comparable with human subjects under controlled conditions. Over 900 MPPH is reported on a single-arm system. For dynamic grasping, we demonstrate catching swimming robot fish in the water.
translated by 谷歌翻译
强化学习是机器人抓握的一种有前途的方法,因为它可以在困难的情况下学习有效的掌握和掌握政策。但是,由于问题的高维度,用精致的机器人手来实现类似人类的操纵能力是具有挑战性的。尽管可以采用奖励成型或专家示范等补救措施来克服这个问题,但它们通常导致过分简化和有偏见的政策。我们介绍了Dext-Gen,这是一种在稀疏奖励环境中灵巧抓握的强化学习框架,适用于各种抓手,并学习无偏见和复杂的政策。通过平滑方向表示实现了抓地力和物体的完全方向控制。我们的方法具有合理的培训时间,并提供了包括所需先验知识的选项。模拟实验证明了框架对不同方案的有效性和适应性。
translated by 谷歌翻译
越来越多的人期望在对象属性具有高感知不确定性的越来越多的非结构化环境中操纵对象。这直接影响成功的对象操纵。在这项工作中,我们提出了一个基于增强的学习动作计划框架,用于对象操纵,该框架既利用了在现有的多感觉反馈,也可以使用学习的注意力引导的深层负担能力模型作为感知状态。可承受的模型是从多种感官方式中学到的,包括视觉和触摸(触觉和力/扭矩),旨在预测和指示具有相似外观的物体的多个负担能力(即抓地力和推动力)的可操作区域属性(例如,质量分布)。然后,对基于DQN的深钢筋学习算法进行培训,以选择成功对象操纵的最佳动作。为了验证提出的框架的性能,使用开放数据集和收集的数据集对我们的方法进行评估和基准测试。结果表明,所提出的方法和整体框架的表现优于现有方法,并实现更好的准确性和更高的效率。
translated by 谷歌翻译
非结构化环境中的多步操纵任务对于学习的机器人来说非常具有挑战性。这些任务相互作用,包括可以获得的预期状态,可以实现整体任务和低级推理,以确定哪些行动将产生这些国家。我们提出了一种无模型的深度加强学习方法来学习多步理操作任务。我们介绍了一个基于视觉的模型架构的机器人操纵网络(ROMANNET),以了解动作值函数并预测操纵操作候选。我们定义基于Gaussian(TPG)奖励函数的任务进度,基于导致成功的动作原语的行动和实现整体任务目标的进展来计算奖励。为了平衡探索/剥削的比率,我们介绍了一个损失调整后的探索(LAE)政策,根据亏损估计的Boltzmann分配来确定来自行动候选人的行动。我们通过培训ROMANNET来展示我们方法的有效性,以了解模拟和现实世界中的几个挑战的多步机械管理任务。实验结果表明,我们的方法优于现有的方法,并在成功率和行动效率方面实现了最先进的性能。消融研究表明,TPG和LAE对多个块堆叠的任务特别有益。代码可用:https://github.com/skumra/romannet
translated by 谷歌翻译
在机器人操作中,以前未见的新物体的自主抓住是一个持续的挑战。在过去的几十年中,已经提出了许多方法来解决特定机器人手的问题。最近引入的Unigrasp框架具有推广到不同类型的机器人抓手的能力。但是,此方法不适用于具有闭环约束的抓手,并且当应用于具有MultiGRASP配置的机器人手时,具有数据范围。在本文中,我们提出了有效绘制的,这是一种独立于抓手模型规范的广义掌握合成和抓地力控制方法。有效绘制利用抓地力工作空间功能,而不是Unigrasp的抓属属性输入。这在训练过程中将记忆使用量减少了81.7%,并可以推广到更多类型的抓地力,例如具有闭环约束的抓手。通过在仿真和现实世界中进行对象抓住实验来评估有效绘制的有效性;结果表明,所提出的方法在仅考虑没有闭环约束的抓手时也胜过Unigrasp。在这些情况下,有效抓取在产生接触点的精度高9.85%,模拟中的握把成功率提高了3.10%。现实世界实验是用带有闭环约束的抓地力进行的,而Unigrasp无法处理,而有效绘制的成功率达到了83.3%。分析了该方法的抓地力故障的主要原因,突出了增强掌握性能的方法。
translated by 谷歌翻译
如今,机器人在我们的日常生活中起着越来越重要的作用。在以人为本的环境中,机器人经常会遇到成堆的对象,包装的项目或孤立的对象。因此,机器人必须能够在各种情况下掌握和操纵不同的物体,以帮助人类进行日常任务。在本文中,我们提出了一种多视图深度学习方法,以处理以人为中心的域中抓住强大的对象。特别是,我们的方法将任意对象的点云作为输入,然后生成给定对象的拼字图。获得的视图最终用于估计每个对象的像素抓握合成。我们使用小对象抓住数据集训练模型端到端,并在模拟和现实世界数据上对其进行测试,而无需进行任何进一步的微调。为了评估所提出方法的性能,我们在三种情况下进行了广泛的实验集,包括孤立的对象,包装的项目和一堆对象。实验结果表明,我们的方法在所有仿真和现实机器人方案中都表现出色,并且能够在各种场景配置中实现新颖对象的可靠闭环抓握。
translated by 谷歌翻译
布料的机器人操作的应用包括织物制造业到处理毯子和洗衣。布料操作对于机器人而言是挑战,这主要是由于它们的高度自由度,复杂的动力学和折叠或皱巴巴配置时的严重自我闭合。机器人操作的先前工作主要依赖于视觉传感器,这可能会对细粒度的操纵任务构成挑战,例如从一堆布上抓住所需数量的布料层。在本文中,我们建议将触觉传感用于布操作;我们将触觉传感器(Resin)连接到弗兰卡机器人的两个指尖之一,并训练分类器,以确定机器人是否正在抓住特定数量的布料层。在测试时间实验中,机器人使用此分类器作为其政策的一部分,使用触觉反馈来掌握一两个布层,以确定合适的握把。实验结果超过180次物理试验表明,与使用图像分类器的方法相比,所提出的方法优于不使用触觉反馈并具有更好地看不见布的基准。代码,数据和视频可在https://sites.google.com/view/reskin-cloth上找到。
translated by 谷歌翻译
触摸感在使人类能够理解和与周围环境互动方面发挥着关键作用。对于机器人,触觉感应也是不可替代的。在与物体交互时,触觉传感器为机器人提供了理解物体的有用信息,例如分布式压力,温度,振动和纹理。在机器人抓住期间,视力通常由其最终效应器封闭,而触觉感应可以测量视觉无法访问的区域。在过去的几十年中,已经为机器人开发了许多触觉传感器,并用于不同的机器人任务。在本章中,我们专注于使用触觉对机器人抓握的触觉,并研究近期对物质性质的触觉趋势。我们首先讨论了术语,即形状,姿势和材料特性对三个重要的物体特性的触觉感知。然后,我们通过触觉感应审查抓握稳定性预测的最新发展。在这些作品中,我们确定了在机器人抓握中协调视觉和触觉感应的要求。为了证明使用触觉传感来提高视觉感知,介绍了我们最近的抗议重建触觉触觉感知的发展。在所提出的框架中,首先利用相机视觉的大型接收领域以便快速搜索含有裂缝的候选区域,然后使用高分辨率光学触觉传感器来检查这些候选区域并重建精制的裂缝形状。实验表明,我们所提出的方法可以实现0.82mm至0.24mm的平均距离误差的显着降低,以便重建。最后,我们在讨论了对机器人任务中施加触觉感应的公开问题和未来方向的讨论。
translated by 谷歌翻译
Current learning-based robot grasping approaches exploit human-labeled datasets for training the models. However, there are two problems with such a methodology: (a) since each object can be grasped in multiple ways, manually labeling grasp locations is not a trivial task; (b) human labeling is biased by semantics. While there have been attempts to train robots using trial-and-error experiments, the amount of data used in such experiments remains substantially low and hence makes the learner prone to over-fitting. In this paper, we take the leap of increasing the available training data to 40 times more than prior work, leading to a dataset size of 50K data points collected over 700 hours of robot grasping attempts. This allows us to train a Convolutional Neural Network (CNN) for the task of predicting grasp locations without severe overfitting. In our formulation, we recast the regression problem to an 18way binary classification over image patches. We also present a multi-stage learning approach where a CNN trained in one stage is used to collect hard negatives in subsequent stages. Our experiments clearly show the benefit of using large-scale datasets (and multi-stage training) for the task of grasping. We also compare to several baselines and show state-of-the-art performance on generalization to unseen objects for grasping.
translated by 谷歌翻译
我们研究机器人如何自主学习需要联合导航和抓握的技能。虽然原则上的加固学习提供自动机器人技能学习,但在实践中,在现实世界中的加固学习是挑战性的,并且往往需要大量的仪器和监督。我们的宗旨是以无论没有人为干预的自主方式,设计用于学习导航和操纵的机器人强化学习系统,在没有人为干预的情况下,在现实的假设下实现持续学习。我们建议的系统relmm,可以在没有任何环境仪器的现实世界平台上不断学习,没有人为干预,而无需访问特权信息,例如地图,对象位置或环境的全局视图。我们的方法采用模块化策略与组件进行操纵和导航,其中操纵政策不确定性驱动导航控制器的探索,操作模块为导航提供奖励。我们在房间清理任务上评估我们的方法,机器人必须导航到并拾取散落在地板上的物品。在掌握课程训练阶段之后,relmm可以在自动真实培训的大约40小时内自动学习导航并完全抓住。
translated by 谷歌翻译
在本文中,我们介绍了DA $^2 $,这是第一个大型双臂灵敏性吸引数据集,用于生成最佳的双人握把对,用于任意大型对象。该数据集包含大约900万的平行jaw grasps,由6000多个对象生成,每个对象都有各种抓紧敏度度量。此外,我们提出了一个端到端的双臂掌握评估模型,该模型在该数据集的渲染场景上训练。我们利用评估模型作为基准,通过在线分析和真实的机器人实验来显示这一新颖和非平凡数据集的价值。所有数据和相关的代码将在https://sites.google.com/view/da2dataset上开源。
translated by 谷歌翻译