Large pre-trained, zero-shot capable models have shown considerable success both for standard transfer and adaptation tasks, with particular robustness towards distribution shifts. In addition, subsequent fine-tuning can considerably improve performance on a selected downstream task. However, through naive fine-tuning, these zero-shot models lose their generalizability and robustness towards distribution shifts. This is a particular problem for tasks such as Continual Learning (CL), where continuous adaptation has to be performed as new task distributions are introduced sequentially. In this work, we showcase that where fine-tuning falls short to adapt such zero-shot capable models, simple momentum-based weight interpolation can provide consistent improvements for CL tasks in both memory-free and memory-based settings. In particular, we find improvements of over $+4\%$ on standard CL benchmarks, while reducing the error to the upper limit of jointly training on all tasks at once in parts by more than half, allowing the continual learner to inch closer to the joint training limits.
translated by 谷歌翻译
持续学习(CL)旨在开发单一模型适应越来越多的任务的技术,从而潜在地利用跨任务的学习以资源有效的方式。 CL系统的主要挑战是灾难性的遗忘,在学习新任务时忘记了早期的任务。为了解决此问题,基于重播的CL方法在遇到遇到任务中选择的小缓冲区中维护和重复培训。我们提出梯度Coreset重放(GCR),一种新颖的重播缓冲区选择和使用仔细设计的优化标准的更新策略。具体而言,我们选择并维护一个“Coreset”,其与迄今为止关于当前模型参数的所有数据的梯度紧密近似,并讨论其有效应用于持续学习设置所需的关键策略。在学习的离线持续学习环境中,我们在最先进的最先进的最先进的持续学习环境中表现出显着的收益(2%-4%)。我们的调查结果还有效地转移到在线/流媒体CL设置,从而显示现有方法的5%。最后,我们展示了持续学习的监督对比损失的价值,当与我们的子集选择策略相结合时,累计增益高达5%。
translated by 谷歌翻译
持续学习需要模型来学习新任务,同时保持先前学识到的知识。已经提出了各种算法来解决这一真正的挑战。到目前为止,基于排练的方法,例如经验重播,取得了最先进的性能。这些方法将过去任务的一小部分保存为内存缓冲区,以防止模型忘记以前学识的知识。但是,它们中的大多数情况都同样对待每一个新任务,即,在学习不同的新任务时修复了框架的超级参数。这样的设置缺乏对过去和新任务之间的关系/相似性的考虑。例如,与从公共汽车中学到的人相比,从狗的知识/特征比识别猫(新任务)更有益。在这方面,我们提出了一种基于BI级优化的元学习算法,以便自适应地调整从过去和新任务中提取的知识之间的关系。因此,该模型可以在持续学习期间找到适当的梯度方向,避免在内存缓冲区上的严重过度拟合问题。广泛的实验是在三个公开的数据集(即CiFar-10,CiFar-100和微小想象网)上进行的。实验结果表明,该方法可以一致地改善所有基线的性能。
translated by 谷歌翻译
持续学习(CL)调查如何在无需遗忘的情况下培训在任务流上的深网络。文献中提出的CL设置假设每个传入示例都与地面真实注释配对。然而,这与许多真实应用的冲突这项工作探讨了持续的半监督学习(CSSL):这里只有一小部分标记的输入示例显示给学习者。我们评估当前CL方法(例如:EWC,LWF,Icarl,ER,GDumb,Der)在这部小说和具有挑战性的情况下,过度装箱纠缠忘记。随后,我们设计了一种新的CSSL方法,用于在学习时利用度量学习和一致性正则化来利用未标记的示例。我们展示我们的提案对监督越来越令人惊讶的是,我们的提案呈现出更高的恢复能力,甚至更令人惊讶地,仅依赖于25%的监督,以满足全面监督培训的优于营业型SOTA方法。
translated by 谷歌翻译
古典机器学习者仅设计用于解决一项任务,而无需采用新的新兴任务或课程,而这种能力在现实世界中更实用和人类。为了解决这种缺点,阐述了持续的机器学习者,以表彰使用域和班级的任务流,不同的任务之间的转变。在本文中,我们提出了一种基于一个基于对比的连续学习方法,其能够处理多个持续学习场景。具体地,我们通过特征传播和对比表示学习来对准当前和先前的表示空间来弥合不同任务之间的域移位。为了进一步减轻特征表示的类别的班次,利用了监督的对比损失以使与不同类别的相同类的示例嵌入。广泛的实验结果表明,与一组尖端连续学习方法相比,六个连续学习基准中提出的方法的出色性能。
translated by 谷歌翻译
这项工作调查了持续学习(CL)与转移学习(TL)之间的纠缠。特别是,我们阐明了网络预训练的广泛应用,强调它本身受到灾难性遗忘的影响。不幸的是,这个问题导致在以后任务期间知识转移的解释不足。在此基础上,我们提出了转移而不忘记(TWF),这是在固定的经过预定的兄弟姐妹网络上建立的混合方法,该方法不断传播源域中固有的知识,通过层次损失项。我们的实验表明,TWF在各种设置上稳步优于其他CL方法,在各种数据集和不同的缓冲尺寸上,平均每种类型的精度增长了4.81%。
translated by 谷歌翻译
持续学习背后的主流范例一直在使模型参数调整到非静止数据分布,灾难性遗忘是中央挑战。典型方法在测试时间依赖排练缓冲区或已知的任务标识,以检索学到的知识和地址遗忘,而这项工作呈现了一个新的范例,用于持续学习,旨在训练更加简洁的内存系统而不在测试时间访问任务标识。我们的方法学会动态提示(L2P)预先训练的模型,以在不同的任务转换下顺序地学习任务。在我们提出的框架中,提示是小型可学习参数,这些参数在内存空间中保持。目标是优化提示,以指示模型预测并明确地管理任务不变和任务特定知识,同时保持模型可塑性。我们在流行的图像分类基准下进行全面的实验,具有不同挑战的持续学习环境,其中L2P始终如一地优于现有最先进的方法。令人惊讶的是,即使没有排练缓冲区,L2P即使没有排练缓冲,L2P也能实现竞争力的结果,并直接适用于具有挑战性的任务不可行的持续学习。源代码在https://github.com/google-Research/l2p中获得。
translated by 谷歌翻译
根据互补学习系统(CLS)理论〜\ cite {mcclelland1995there}在神经科学中,人类通过两个补充系统有效\ emph {持续学习}:一种快速学习系统,以海马为中心,用于海马,以快速学习细节,个人体验,个人体验,个人体验,个人体验,个人体验,个人体验,个人体验,个人体验的快速学习, ;以及位于新皮层中的缓慢学习系统,以逐步获取有关环境的结构化知识。在该理论的激励下,我们提出\ emph {dualnets}(对于双网络),这是一个一般的持续学习框架,该框架包括一个快速学习系统,用于监督从特定任务和慢速学习系统中的模式分离代表学习,用于表示任务的慢学习系统 - 不可知论的一般代表通过自我监督学习(SSL)。双网符可以无缝地将两种表示类型纳入整体框架中,以促进在深层神经网络中更好地持续学习。通过广泛的实验,我们在各种持续的学习协议上展示了双网络的有希望的结果,从标准离线,任务感知设置到具有挑战性的在线,无任务的场景。值得注意的是,在Ctrl〜 \ Cite {veniat2020202020202020202020202020202020202020202020202020202020202021- coite {ostapenko2021-continual}的基准中。此外,我们进行了全面的消融研究,以验证双nets功效,鲁棒性和可伸缩性。代码可在\ url {https://github.com/phquang/dualnet}上公开获得。
translated by 谷歌翻译
一组复杂的机制促进了大脑中的持续学习(CL)。这包括用于整合信息的多个内存系统的相互作用,如互补学习系统(CLS)理论和突触巩固,以保护获得的知识免受擦除。因此,我们提出了一种通用CL方法,该方法在突触巩固和双重记忆体验重播(Synergy)之间产生协同作用。我们的方法保持语义记忆,该记忆积累并巩固了整个任务中的信息,并与情节内存进行交互以有效重播。它通过跟踪训练轨迹期间参数的重要性并将其固定在语义内存中的巩固参数中,进一步采用了突触巩固。据我们所知,我们的研究是第一个与突触合并一起使用双重记忆体验重播的,该合并适用于一般CL,网络在培训或推理过程中不利用任务边界或任务标签。我们对各种具有挑战性的CL情景和特征分析的评估表明,将突触巩固和CLS理论纳入启用DNN中的有效CL的功效。
translated by 谷歌翻译
最近的自我监督学习方法能够学习高质量的图像表示,并通过监督方法关闭差距。但是,这些方法无法逐步获取新的知识 - 事实上,它们实际上主要仅用为具有IID数据的预训练阶段。在这项工作中,我们在没有额外的记忆或重放的情况下调查持续学习制度的自我监督方法。为防止忘记以前的知识,我们提出了功能正规化的使用。我们将表明,朴素的功能正则化,也称为特征蒸馏,导致可塑性的低可塑性,因此严重限制了连续的学习性能。为了解决这个问题,我们提出了预测的功能正则化,其中一个单独的投影网络确保新学习的特征空间保留了先前的特征空间的信息,同时允许学习新功能。这使我们可以防止在保持学习者的可塑性时忘记。针对应用于自我监督的其他增量学习方法的评估表明我们的方法在不同场景和多个数据集中获得竞争性能。
translated by 谷歌翻译
人类智慧的主食是以不断的方式获取知识的能力。在Stark对比度下,深网络忘记灾难性,而且为此原因,类增量连续学习促进方法的子字段逐步学习一系列任务,将顺序获得的知识混合成综合预测。这项工作旨在评估和克服我们以前提案黑暗体验重播(Der)的陷阱,这是一种简单有效的方法,将排练和知识蒸馏结合在一起。灵感来自于我们的思想不断重写过去的回忆和对未来的期望,我们赋予了我的能力,即我的能力来修改其重播记忆,以欢迎有关过去数据II的新信息II)为学习尚未公开的课程铺平了道路。我们表明,这些策略的应用导致了显着的改进;实际上,得到的方法 - 被称为扩展-DAR(X-DER) - 优于标准基准(如CiFar-100和MiniimAgeNet)的技术状态,并且这里引入了一个新颖的。为了更好地了解,我们进一步提供了广泛的消融研究,以证实并扩展了我们以前研究的结果(例如,在持续学习设置中知识蒸馏和漂流最小值的价值)。
translated by 谷歌翻译
Despite significant advances, the performance of state-of-the-art continual learning approaches hinges on the unrealistic scenario of fully labeled data. In this paper, we tackle this challenge and propose an approach for continual semi-supervised learning -- a setting where not all the data samples are labeled. An underlying issue in this scenario is the model forgetting representations of unlabeled data and overfitting the labeled ones. We leverage the power of nearest-neighbor classifiers to non-linearly partition the feature space and learn a strong representation for the current task, as well as distill relevant information from previous tasks. We perform a thorough experimental evaluation and show that our method outperforms all the existing approaches by large margins, setting a strong state of the art on the continual semi-supervised learning paradigm. For example, on CIFAR100 we surpass several others even when using at least 30 times less supervision (0.8% vs. 25% of annotations).
translated by 谷歌翻译
持续学习的现有工作(CL)的重点是减轻灾难性遗忘,即学习新任务时过去任务的模型绩效恶化。但是,CL系统的训练效率不足,这限制了CL系统在资源有限的方案下的现实应用。在这项工作中,我们提出了一个名为“稀疏持续学习”(SPARCL)的新颖框架,这是第一个利用稀疏性以使边缘设备上具有成本效益的持续学习的研究。 SPARCL通过三个方面的协同作用来实现训练加速度和准确性保护:体重稀疏性,数据效率和梯度稀疏性。具体而言,我们建议在整个CL过程中学习一个稀疏网络,动态数据删除(DDR),以删除信息较少的培训数据和动态梯度掩盖(DGM),以稀疏梯度更新。他们每个人不仅提高了效率,而且进一步减轻了灾难性的遗忘。 SPARCL始终提高现有最新CL方法(SOTA)CL方法的训练效率最多减少了训练失败,而且令人惊讶的是,SOTA的准确性最多最多提高了1.7%。 SPARCL还优于通过将SOTA稀疏训练方法适应CL设置的效率和准确性获得的竞争基线。我们还评估了SPARCL在真实手机上的有效性,进一步表明了我们方法的实际潜力。
translated by 谷歌翻译
Modern machine learning pipelines are limited due to data availability, storage quotas, privacy regulations, and expensive annotation processes. These constraints make it difficult or impossible to maintain a large-scale model trained on growing annotation sets. Continual learning directly approaches this problem, with the ultimate goal of devising methods where a neural network effectively learns relevant patterns for new (unseen) classes without significantly altering its performance on previously learned ones. In this paper, we address the problem of continual learning for video data. We introduce PIVOT, a novel method that leverages the extensive knowledge in pre-trained models from the image domain, thereby reducing the number of trainable parameters and the associated forgetting. Unlike previous methods, ours is the first approach that effectively uses prompting mechanisms for continual learning without any in-domain pre-training. Our experiments show that PIVOT improves state-of-the-art methods by a significant 27% on the 20-task ActivityNet setup.
translated by 谷歌翻译
预训练的代表是现代深度学习成功的关键要素之一。但是,现有的关于持续学习方法的作品主要集中在从头开始逐步学习学习模型。在本文中,我们探讨了一个替代框架,以逐步学习,我们不断从预训练的表示中微调模型。我们的方法利用了预训练的神经网络的线性化技术来进行简单有效的持续学习。我们表明,这使我们能够设计一个线性模型,其中将二次参数正则方法作为最佳持续学习策略,同时享受神经网络的高性能。我们还表明,所提出的算法使参数正则化方法适用于类新问题。此外,我们还提供了一个理论原因,为什么在接受跨凝结损失训练的神经网络上,现有的参数空间正则化算法(例如EWC表现不佳)。我们表明,提出的方法可以防止忘记,同时在图像分类任务上实现高连续的微调性能。为了证明我们的方法可以应用于一般的持续学习设置,我们评估了我们在数据收入,任务收入和课堂学习问题方面的方法。
translated by 谷歌翻译
对非平稳数据流的持续学习(CL)仍然是深层神经网络(DNN)的长期挑战之一,因为它们容易出现灾难性的遗忘。 CL模型可以从自我监督的预训练中受益,因为它可以学习更具概括性的任务不可能的功能。但是,随着任务序列的长度的增加,自我监督的预训练的影响会减少。此外,域前训练数据分布和任务分布之间的域转移降低了学习表示的普遍性。为了解决这些局限性,我们建议任务不可知代表合并(TARC),这是CL的两阶段培训范式,它交织了任务 - 诺斯局和特定于任务的学习,从而自欺欺人的培训,然后为每个任务进行监督学习。为了进一步限制在自我监督阶段的偏差,我们在监督阶段采用了任务不可屈服的辅助损失。我们表明,我们的培训范式可以轻松地添加到基于内存或正则化的方法中,并在更具挑战性的CL设置中提供一致的性能增长。我们进一步表明,它导致更健壮和校准的模型。
translated by 谷歌翻译
Artificial neural networks thrive in solving the classification problem for a particular rigid task, acquiring knowledge through generalized learning behaviour from a distinct training phase. The resulting network resembles a static entity of knowledge, with endeavours to extend this knowledge without targeting the original task resulting in a catastrophic forgetting. Continual learning shifts this paradigm towards networks that can continually accumulate knowledge over different tasks without the need to retrain from scratch. We focus on task incremental classification, where tasks arrive sequentially and are delineated by clear boundaries. Our main contributions concern (1) a taxonomy and extensive overview of the state-of-the-art; (2) a novel framework to continually determine the stability-plasticity trade-off of the continual learner; (3) a comprehensive experimental comparison of 11 state-of-the-art continual learning methods and 4 baselines. We empirically scrutinize method strengths and weaknesses on three benchmarks, considering Tiny Imagenet and large-scale unbalanced iNaturalist and a sequence of recognition datasets. We study the influence of model capacity, weight decay and dropout regularization, and the order in which the tasks are presented, and qualitatively compare methods in terms of required memory, computation time and storage.
translated by 谷歌翻译
We motivate Energy-Based Models (EBMs) as a promising model class for continual learning problems. Instead of tackling continual learning via the use of external memory, growing models, or regularization, EBMs change the underlying training objective to cause less interference with previously learned information. Our proposed version of EBMs for continual learning is simple, efficient, and outperforms baseline methods by a large margin on several benchmarks. Moreover, our proposed contrastive divergence-based training objective can be combined with other continual learning methods, resulting in substantial boosts in their performance. We further show that EBMs are adaptable to a more general continual learning setting where the data distribution changes without the notion of explicitly delineated tasks. These observations point towards EBMs as a useful building block for future continual learning methods.
translated by 谷歌翻译
持续学习(CL)旨在从依次到达的任务中学习,而无需忘记以前的任务。尽管CL算法试图在到目前为止所学的所有任务中实现更高的平均测试准确性,但学习对成功的概括和下游转移至关重要。为了衡量代表性质量,我们仅使用一个小平衡数据集对所有任务进行重新培训,从而评估平均准确性,而无需对当前任务进行任何偏见的预测。我们还测试了几个下游任务,测量了学习表示的转移学习准确性。通过测试我们在Imagenet-100和Imagenet-1000上的新形式主义,我们发现使用更多的示例记忆是在学习的表示形式中产生有意义差异的唯一选择,以及大多数基于正则化或蒸馏的CL算法,都使用了示例记忆无法在课堂学习学习中学习不断有用的表示。令人惊讶的是,具有足够记忆大小的无监督(或自制的)CL可以达到与受监督对应物相当的性能。考虑到非平凡的标签成本,我们声称找到更有效的无监督CL算法,这些算法最少使用示例性记忆将是CL研究的下一个有希望的方向。
translated by 谷歌翻译
现代ML方法在培训数据是IID,大规模和良好标记的时候Excel。在不太理想的条件下学习仍然是一个开放的挑战。在不利条件下,几次射击,持续的,转移和代表学习的子场在学习中取得了很大的进步;通过方法和见解,每个都提供了独特的优势。这些方法解决了不同的挑战,例如依次到达的数据或稀缺的训练示例,然而,在部署之前,ML系统将面临困难的条件。因此,需要可以处理实际设置中许多学习挑战的一般ML系统。为了促进一般ML方法目标的研究,我们介绍了一个新的统一评估框架 - 流体(灵活的顺序数据)。流体集成了几次拍摄,持续的,转移和表示学习的目标,同时能够比较和整合这些子场的技术。在流体中,学习者面临数据流,并且必须在选择如何更新自身时进行顺序预测,快速调整到新颖的类别,并处理更改的数据分布;虽然会计计算总额。我们对广泛的方法进行实验,这些方法阐述了新的洞察当前解决方案的优缺点并表明解决了新的研究问题。作为更一般方法的起点,我们展示了两种新的基线,其在流体上优于其他评估的方法。项目页面:https://raivn.cs.washington.edu/projects/fluid/。
translated by 谷歌翻译