Existing pre-training methods for extractive Question Answering (QA) generate cloze-like queries different from natural questions in syntax structure, which could overfit pre-trained models to simple keyword matching. In order to address this problem, we propose a novel Momentum Contrastive pRe-training fOr queStion anSwering (MCROSS) method for extractive QA. Specifically, MCROSS introduces a momentum contrastive learning framework to align the answer probability between cloze-like and natural query-passage sample pairs. Hence, the pre-trained models can better transfer the knowledge learned in cloze-like samples to answering natural questions. Experimental results on three benchmarking QA datasets show that our method achieves noticeable improvement compared with all baselines in both supervised and zero-shot scenarios.
translated by 谷歌翻译
使用无法回答的问题的机器阅读理解是一项艰巨的NLP任务,受到无法从段落回答的问题的挑战。据观察,微妙的文字变化通常使一个可回答的问题无法回答,但是,大多数MRC模型无法识别此类变化。为了解决这个问题,在本文中,我们提出了一种基于跨度的对比度学习方法(SPANCL),该方法在答案跨度上明确将可回答的问题与他们的回答和无法回答的对应物进行了明确的对比。使用SPANCL,MRC模型被迫从微小的字面差异中感知至关重要的语义变化。小队2.0数据集的实验表明,SPANCL可以显着改善基准,从而产生0.86-2.14绝对EM的改进。其他实验还表明,Spancl是利用生成问题的有效方法。
translated by 谷歌翻译
问题答案(QA)是自然语言处理中最具挑战性的最具挑战性的问题之一(NLP)。问答(QA)系统试图为给定问题产生答案。这些答案可以从非结构化或结构化文本生成。因此,QA被认为是可以用于评估文本了解系统的重要研究区域。大量的QA研究致力于英语语言,调查最先进的技术和实现最先进的结果。然而,由于阿拉伯QA中的研究努力和缺乏大型基准数据集,在阿拉伯语问答进展中的研究努力得到了很大速度的速度。最近许多预先接受的语言模型在许多阿拉伯语NLP问题中提供了高性能。在这项工作中,我们使用四个阅读理解数据集来评估阿拉伯QA的最先进的接种变压器模型,它是阿拉伯语 - 队,ArcD,AQAD和TYDIQA-GoldP数据集。我们微调并比较了Arabertv2基础模型,ArabertV0.2大型型号和ARAElectra模型的性能。在最后,我们提供了一个分析,了解和解释某些型号获得的低绩效结果。
translated by 谷歌翻译
信息检索是自然语言处理中的重要组成部分,用于知识密集型任务,如问题应答和事实检查。最近,信息检索已经看到基于神经网络的密集检索器的出现,作为基于术语频率的典型稀疏方法的替代方案。这些模型在数据集和任务中获得了最先进的结果,其中提供了大型训练集。但是,它们不会很好地转移到没有培训数据的新域或应用程序,并且通常因未经监督的术语 - 频率方法(例如BM25)的术语频率方法而言。因此,自然问题是如果没有监督,是否有可能训练密集的索取。在这项工作中,我们探讨了对比学习的限制,作为培训无人监督的密集检索的一种方式,并表明它导致强烈的检索性能。更确切地说,我们在15个数据集中出现了我们的模型胜过BM25的Beir基准测试。此外,当有几千例的示例可用时,我们显示微调我们的模型,与BM25相比,这些模型导致强大的改进。最后,当在MS-Marco数据集上微调之前用作预训练时,我们的技术在Beir基准上获得最先进的结果。
translated by 谷歌翻译
由于低资源语言缺乏培训数据,交叉语言机器阅读理解(XMRC)是挑战。最近的方法仅使用培训数据,以资源丰富的语言,如英语到微调大规模的跨语法预训练的语言模型。由于语言之间的巨大差异,仅由源语言微调的模型可能无法对目标语言表现良好。有趣的是,我们观察到,虽然先前方法预测的前1个结果可能经常无法达到地面真理答案,但是正确的答案通常包含在Top-K预测结果中。基于这种观察,我们开发了一种两级方法来提高模型性能。召回的第一阶段目标:我们设计一个艰难的学习(HL)算法,以最大化顶级预测包含准确答案的可能性。第二阶段专注于精确:开发了答案感知对比学习(AA-CL)机制,以了解准确答案和其他候选者之间的细差异。我们的广泛实验表明,我们的模型在两个交叉语言MRC基准数据集上显着优于一系列强大的基线。
translated by 谷歌翻译
Human reading comprehension often requires reasoning of event semantic relations in narratives, represented by Event-centric Question-Answering (QA). To address event-centric QA, we propose a novel QA model with contrastive learning and invertible event transformation, call TranCLR. Our proposed model utilizes an invertible transformation matrix to project semantic vectors of events into a common event embedding space, trained with contrastive learning, and thus naturally inject event semantic knowledge into mainstream QA pipelines. The transformation matrix is fine-tuned with the annotated event relation types between events that occurred in questions and those in answers, using event-aware question vectors. Experimental results on the Event Semantic Relation Reasoning (ESTER) dataset show significant improvements in both generative and extractive settings compared to the existing strong baselines, achieving over 8.4% gain in the token-level F1 score and 3.0% gain in Exact Match (EM) score under the multi-answer setting. Qualitative analysis reveals the high quality of the generated answers by TranCLR, demonstrating the feasibility of injecting event knowledge into QA model learning. Our code and models can be found at https://github.com/LuJunru/TranCLR.
translated by 谷歌翻译
对于开放式域问题的密集检索已被证明通过在问题通道对的大型数据集上培训来实现令人印象深刻的性能。我们调查是否可以以自我监督的方式学习密集的检索,并有效地应用没有任何注释。我们观察到这种情况下的检索斗争的现有借用模型,并提出了一种设计用于检索的新预制方案:重复跨度检索。我们在文档中使用经常性跨度来创建用于对比学习的伪示例。由此产生的模型 - 蜘蛛 - 在广泛的ODQA数据集上没有任何示例,并且与BM25具有竞争力,具有强烈的稀疏基线。此外,蜘蛛通常优于DPR在其他数据集的问题上培训的DPR培训的强大基线。我们将蜘蛛与BM25结合的混合猎犬改进了所有数据集的组件,并且通常与域中DPR模型具有竞争力,这些模型培训数万例培训。
translated by 谷歌翻译
We present SpanBERT, a pre-training method that is designed to better represent and predict spans of text. Our approach extends BERT by (1) masking contiguous random spans, rather than random tokens, and (2) training the span boundary representations to predict the entire content of the masked span, without relying on the individual token representations within it. Span-BERT consistently outperforms BERT and our better-tuned baselines, with substantial gains on span selection tasks such as question answering and coreference resolution. In particular, with the same training data and model size as BERT large , our single model obtains 94.6% and 88.7% F1 on SQuAD 1.1 and 2.0 respectively. We also achieve a new state of the art on the OntoNotes coreference resolution task (79.6% F1), strong performance on the TACRED relation extraction benchmark, and even gains on GLUE. 1 * Equal contribution. 1 Our code and pre-trained models are available at https://github.com/facebookresearch/ SpanBERT.
translated by 谷歌翻译
Supervised Question Answering systems (QA systems) rely on domain-specific human-labeled data for training. Unsupervised QA systems generate their own question-answer training pairs, typically using secondary knowledge sources to achieve this outcome. Our approach (called PIE-QG) uses Open Information Extraction (OpenIE) to generate synthetic training questions from paraphrased passages and uses the question-answer pairs as training data for a language model for a state-of-the-art QA system based on BERT. Triples in the form of <subject, predicate, object> are extracted from each passage, and questions are formed with subjects (or objects) and predicates while objects (or subjects) are considered as answers. Experimenting on five extractive QA datasets demonstrates that our technique achieves on-par performance with existing state-of-the-art QA systems with the benefit of being trained on an order of magnitude fewer documents and without any recourse to external reference data sources.
translated by 谷歌翻译
我们提供了从文本到文本变换器(T5)的第一次探索句子嵌入式。句子嵌入式广泛适用于语言处理任务。虽然T5在作为序列到序列映射问题的语言任务上实现令人印象深刻的性能,但目前尚不清楚如何从编码器解码器模型生成陈列嵌入的句子。我们调查三种方法提取T5句子嵌入方法:两个仅利用T5编码器,一个使用全T5编码器解码器模型。为了支持我们的调查,我们建立了一个新的句子代表转移基准,SentGlue,它将Senteval Toolkit扩展到粘合基准的九个任务。我们的编码器的型号优于Senteval和SentGlue传输任务的句子 - BERT和SIMCSE句子嵌入,包括语义文本相似性(STS)。发现从数百万到数十亿参数的缩放T5产生一致的进一步改进。最后,我们的编码器 - 解码器方法在使用句子嵌入时在STS上实现了新的最先进的。我们的模型在https://tfhub.dev/google/collections/sentence-t5/1发布。
translated by 谷歌翻译
Using a single model across various tasks is beneficial for training and applying deep neural sequence models. We address the problem of developing generalist representations of text that can be used to perform a range of different tasks rather than being specialised to a single application. We focus on processing short questions and developing an embedding for these questions that is useful on a diverse set of problems, such as question topic classification, equivalent question recognition, and question answering. This paper introduces QBERT, a generalist model for processing questions. With QBERT, we demonstrate how we can train a multi-task network that performs all question-related tasks and has achieved similar performance compared to its corresponding single-task models.
translated by 谷歌翻译
已经表明,在一个域上训练的双编码器经常概括到其他域以获取检索任务。一种广泛的信念是,一个双编码器的瓶颈层,其中最终得分仅仅是查询向量和通道向量之间的点产品,它过于局限,使得双编码器是用于域外概括的有效检索模型。在本文中,我们通过缩放双编码器模型的大小{\ em同时保持固定的瓶颈嵌入尺寸固定的瓶颈的大小来挑战这一信念。令人惊讶的是,令人惊讶的是,缩放模型尺寸会对各种缩放提高检索任务,特别是对于域外泛化。实验结果表明,我们的双编码器,\ textbf {g} enovalizable \ textbf {t} eTrievers(gtr),优先级%colbert〜\ cite {khattab2020colbertt}和现有的稀疏和密集的索取Beir DataSet〜\ Cite {Thakur2021Beir}显着显着。最令人惊讶的是,我们的消融研究发现,GTR是非常数据的高效,因为它只需要10 \%MARCO监督数据,以实现最佳域的性能。所有GTR模型都在https://tfhub.dev/google/collections/gtr/1发布。
translated by 谷歌翻译
一种有效的横向传输方法是在一种语言中微调在监督数据集上的双语或多语言模型,并以零拍方式在另一种语言上进行评估。在培训时间或推理时间翻译例子也是可行的替代方案。然而,存在与文献中很少有关的这些方法相关的成本。在这项工作中,我们在其有效性(例如,准确性),开发和部署成本方面分析交叉语言方法,以及推理时间的延迟。我们的三个任务的实验表明最好的交叉方法是高度任务依赖性的。最后,通过结合零射和翻译方法,我们在这项工作中使用的三个数据集中实现了最先进的。基于这些结果,我们对目标语言手动标记的培训数据有所了解。代码和翻译的数据集可在https://github.com/unicamp-dl/cross-lingsual-analysis上获得
translated by 谷歌翻译
We introduce a new language representation model called BERT, which stands for Bidirectional Encoder Representations from Transformers. Unlike recent language representation models (Peters et al., 2018a;Radford et al., 2018), BERT is designed to pretrain deep bidirectional representations from unlabeled text by jointly conditioning on both left and right context in all layers. As a result, the pre-trained BERT model can be finetuned with just one additional output layer to create state-of-the-art models for a wide range of tasks, such as question answering and language inference, without substantial taskspecific architecture modifications.BERT is conceptually simple and empirically powerful. It obtains new state-of-the-art results on eleven natural language processing tasks, including pushing the GLUE score to 80.5% (7.7% point absolute improvement), MultiNLI accuracy to 86.7% (4.6% absolute improvement), SQuAD v1.1 question answering Test F1 to 93.2 (1.5 point absolute improvement) and SQuAD v2.0 Test F1 to 83.1 (5.1 point absolute improvement).
translated by 谷歌翻译
大型语言模型在各种任务上显示出令人印象深刻的几次结果。但是,当知识是此类结果的关键时,就像问题回答和事实检查之类的任务一样,似乎需要存储知识的大量参数计数。众所周知,检索增强模型可以在不需要多个参数的情况下在知识密集的任务上表现出色,但是目前尚不清楚它们是否在几个弹药设置中工作。在这项工作中,我们介绍了地图集,这是一个经过精心设计和预先训练的增强语言模型,能够通过很少的培训示例学习知识密集型任务。我们对包括MMLU,苏格兰短裙和归类等各种任务进行评估,并研究文档索引内容的影响,表明它可以很容易地进行更新。值得注意的是,在自然问题上仅使用64个示例在自然问题上达到超过42 \%的准确性,尽管参数少了50倍,但比540B参数模型的表现优于540b参数模型。
translated by 谷歌翻译
Powerful generative models have led to recent progress in question generation (QG). However, it is difficult to measure advances in QG research since there are no standardized resources that allow a uniform comparison among approaches. In this paper, we introduce QG-Bench, a multilingual and multidomain benchmark for QG that unifies existing question answering datasets by converting them to a standard QG setting. It includes general-purpose datasets such as SQuAD for English, datasets from ten domains and two styles, as well as datasets in eight different languages. Using QG-Bench as a reference, we perform an extensive analysis of the capabilities of language models for the task. First, we propose robust QG baselines based on fine-tuning generative language models. Then, we complement automatic evaluation based on standard metrics with an extensive manual evaluation, which in turn sheds light on the difficulty of evaluating QG models. Finally, we analyse both the domain adaptability of these models as well as the effectiveness of multilingual models in languages other than English. QG-Bench is released along with the fine-tuned models presented in the paper https://github.com/asahi417/lm-question-generation, which are also available as a demo https://autoqg.net/.
translated by 谷歌翻译
This paper presents E5, a family of state-of-the-art text embeddings that transfer well to a wide range of tasks. The model is trained in a contrastive manner with weak supervision signals from our curated large-scale text pair dataset (called CCPairs). E5 can be readily used as a general-purpose embedding model for any tasks requiring a single-vector representation of texts such as retrieval, clustering, and classification, achieving strong performance in both zero-shot and fine-tuned settings. We conduct extensive evaluations on 56 datasets from the BEIR and MTEB benchmarks. For zero-shot settings, E5 is the first model that outperforms the strong BM25 baseline on the BEIR retrieval benchmark without using any labeled data. When fine-tuned, E5 obtains the best results on the MTEB benchmark, beating existing embedding models with 40x more parameters.
translated by 谷歌翻译
最近的开放式域问题的作品应答使用检索器模型引用外部知识库,可选地重新映射与单独的重新编制模型,并使用另一个读取器模型生成答案。尽管执行相关任务,但模型具有单独的参数,并且在训练期间略微耦合。在这项工作中,我们建议将猎犬和重新划分为依次应用于变压器架构内的硬注视机制,并将所产生的计算表示给读者送入。在这个奇异模型架构中,隐藏的表示从搬运者逐渐改进到Reranker到读者,这更有效地利用模型容量,并且当我们以端到端的方式训练时,还导致更好的梯度流动。我们还提出了一种预先训练的方法,以有效地培训这种架构。我们评估我们的自然问题和TriviaQA Open DataSets的模型以及固定参数预算,我们的模型优于以前的最先进模型1.0和0.7精确匹配分数。
translated by 谷歌翻译
Fine-tuned language models use greedy decoding to answer reading comprehension questions with relative success. However, this approach does not ensure that the answer is a span in the given passage, nor does it guarantee that it is the most probable one. Does greedy decoding actually perform worse than an algorithm that does adhere to these properties? To study the performance and optimality of greedy decoding, we present exact-extract, a decoding algorithm that efficiently finds the most probable answer span in the context. We compare the performance of T5 with both decoding algorithms on zero-shot and few-shot extractive question answering. When no training examples are available, exact-extract significantly outperforms greedy decoding. However, greedy decoding quickly converges towards the performance of exact-extract with the introduction of a few training examples, becoming more extractive and increasingly likelier to generate the most probable span as the training set grows. We also show that self-supervised training can bias the model towards extractive behavior, increasing performance in the zero-shot setting without resorting to annotated examples. Overall, our results suggest that pretrained language models are so good at adapting to extractive question answering, that it is often enough to fine-tune on a small training set for the greedy algorithm to emulate the optimal decoding strategy.
translated by 谷歌翻译
We present Pre-trained Machine Reader (PMR), a novel method to retrofit Pre-trained Language Models (PLMs) into Machine Reading Comprehension (MRC) models without acquiring labeled data. PMR is capable of resolving the discrepancy between model pre-training and downstream fine-tuning of existing PLMs, and provides a unified solver for tackling various extraction tasks. To achieve this, we construct a large volume of general-purpose and high-quality MRC-style training data with the help of Wikipedia hyperlinks and design a Wiki Anchor Extraction task to guide the MRC-style pre-training process. Although conceptually simple, PMR is particularly effective in solving extraction tasks including Extractive Question Answering and Named Entity Recognition, where it shows tremendous improvements over previous approaches especially under low-resource settings. Moreover, viewing sequence classification task as a special case of extraction task in our MRC formulation, PMR is even capable to extract high-quality rationales to explain the classification process, providing more explainability of the predictions.
translated by 谷歌翻译